Analiza proizvodnih kapaciteta, tržišta i kakvoće čvrstih biogoriva na području Županije Središnja Bosna (BIH)

Abaz, Jerko

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Forestry / Sveučilište u Zagrebu, Šumarski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:108:679457

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-05-11

Repository / Repozitorij:

University of Zagreb Faculty of Forestry and Wood Technology
ŠUMARSKI FAKULTET SVEUČILIŠTA U ZAGREBU

ŠUMARSKI ODSJEK
SVEUČILIŠNI DIPLOMSKI STUDIJ
ŠUMARSKE TEHNIKE, TEHNOLOGIJE I MENADŽMENT U ŠUMARSTVU

JERKO ABAZ

ANALIZA PROIZVODNIH KAPACITETA, TRŽIŠTA I KAKVOĆE ČVRSTIH BIOGORIVA NA PODRUČJU ŽUPANIJE SREDIŠNJA BOSNA (BIH)

DIPLOMSKI RAD

ZAGREB, 2016.
ŠUMARSKI FAKULTET SVEUČILIŠTA U ZAGREBU
ŠUMARSKI ODSJEK

ANALIZA PROIZVODNIH KAPACITETA, TRŽIŠTA I KAKVOĆE ČVRSTIH BIOGORIVA NA PODRUČJU ŽUPANIJE SREDIŠNJA BOSNA (BIH)

DIPLOMSKI RAD

Diplomski studij: Tehnike, tehnologije i menadžment u šumarstvu
Predmet: Šumski proizvodi
Ispitno povjerenstvo: 1. Izv. prof. dr. sc. Željko Zečić
2. Prof. dr. sc. Stjepan Risović
3. Dr. sc. Dinko Vusić

Student: Jerko Abaz
JMBAG: 0068216273
Broj indeksa: 575/14
Datum predaje rada: 02.09.2016.

ZAGREB, rujan, 2016.
Title
Analysis of production capacity, market and quality of solid biofuels in the area of Central Bosnia Canton (BiH)

Naslov
Analiza proizvodnih kapaciteta, tržišta i jakvoće čvrstih biogoriva na području Županije Središnja Bosna (BiH)

Autor
Jerko Abaz

Adresa autora
Rastovci bb, 72290 Novi Travnik, Bosna i Hercegovina

Rad izrađen
Šumarski fakultet Sveučilišta u Zagrebu

Vrsta objave
Diplomski rad

Mentor
Izv. prof. dr. sc. Željko Zečić

Izradu rada pomogao
Dr. sc. Dinko Vusić

Godina objave
2016.

Obujem
60 stranic; 11 tablica; 30 slika; 86 navoda literature

Ključne riječi
normizacija, certifikacija, drvni pelet

Keywords
standardisation, certification, wood pellets

Sažetak
U radu je prezentiran kratak pregled šumarstva i drvne industrije u Bosni i Hercegovini s detaljnijim osvrtom na institucionalnu organiziranost i stanje šumarstva i drvne industrije u Županiji Središnja Bosna.

Cilj istraživanja je analiza proizvodnih kapaciteta, tržišta i jakvoće čvrstih biogoriva u Županiji Središnja Bosna. Generalno su opisana različita čvrsta biogoriva i proizvodni procesi za sve od njih. Urađena je analiza proizvedenih količina čvrstih biogoriva te laboratorijske analize prikupljenih uzoraka drvnih peleta, piljevine i drvne sječke za jedan od uzoraka drvnih peleta. U prilikama prilikom laboratorijske analize razlikovali su se s obzirom na vrstu drveća od koje su proizvedeni. Uzorci su se pripremali četvrtinskom metodom. Od svakog uzorka peleta uzimala su se 3 uzorka (300–500 grama) za provođenje gravimetrijske analize. Iz uzoraka drvnih peleta uzimao se uzorak za provođenje granulometrijske analize. Na tim uzorcima provedeno je mjerenje duljine i promjera. Nakon gravimetrijske analize izuzeti su usitnjeni uzorci za određivanje udjela pepela i određivanje udjela vode pri analizi pepela.

Kakvoća analiziranih uzoraka (5) nije deklarirana prema ENplus standardima. Najveća su odstupanja s obzirom na uzorak koji četiri uzorka svrstava u A2 klasu. Jedan uzorak zbog udjela finih čestica ne zadovoljava kriterije ENplus.

S aspekta proizvodnje i predviđene potrebe za ogrjevnim drvom u ovoj Županiji ustanovilo se da postoje znatan disbalans. Godišnja proizvodnja ogrjevnog drva u državnim šumama kreće se oko 100 000 m³, a predviđena godišnja potreba za ogrjevnim drvom iznosi oko 400 000 m³. Predviđena potreba za drvnim obujmom za proizvodnju drvog ugljena s obzirom na broj podignutih žičarica (475) kreće se u iznosu oko 90 000 m³. Proizvodnja drvnih peleta u Bosni i Hercegovini pa tako i u ovoj Županiji bilježi sve veći rast. Trenutno instalirani kapaciteti za proizvodnju drvnih peleta iznose 20 000 tona godišnje od čega 80 % završava na inozemnom tržištu. Važnost certifikacije drvnih peleta bitna je iz razloga jednostavnijeg i sigurnijeg plasmanja proizvoda na inozemno tržište.
Sadržaj

1. Uvod ... 1

2. Problematika ... 4
 2.1 Organizacija šumarstva i prerade drva na razini Federacije BiH .. 4
 2.2 Čvrsta biogoriva ... 6
 2.2.1 Ogrjevno drvo ... 6
 2.2.2 Drvni ugljen ... 11
 2.2.3 Drvna sječka ... 15
 2.2.4 Drvni briketi ... 23
 2.2.5 Drvni peleti ... 25
 2.3 Normizacija i certifikacija čvrstih biogoriva ... 28
 2.3.1 Normizacija čvrstih biogoriva ... 28
 2.3.2 Certifikacija čvrstih biogoriva ... 31

3. Materijal i metode istraživanja ... 36
 3.1 Materijal .. 36
 3.1.1 Županija Središnja Bosna .. 36
 3.1.2 Šumarstvo i drvna industrija ... 39
 3.2 Metode istraživanja .. 41
 3.2.1 Analiza proizvedenih količina i vrijednosti čvrstih biogoriva .. 42
 3.2.2 Laboratorijske analize ... 42
 3.2.3 Kontrola kakvoće i klasifikacija prema ENplus ... 45

4. Rezultati ... 46
 4.1 Proizvodnja i potrošnja čvrstih biogoriva u Županiji Središnja Bosna 46
 4.2 Kakvoća drvnih peleta .. 51
 4.2.1 Pelet 1 ... 51
 4.2.2 Pelet 2 ... 52
 4.2.3 Pelet 3 ... 52
 4.2.4 Pelet 4 ... 52
 4.2.5 Pelet 5 ... 53
 4.3 Kontrola kakvoće i klasifikacija prema ENplus .. 54

5. Zaključak ... 55

6. Literatura ... 56
POPI SLIKA

Slika 1. Kratko rezano i cijepano drvo 7
Slika 2. Proizvodnja klasičnog ogrjevnog drva 8
Slika 3. Hidraulički cjepać 8
Slika 4. Drvni ugljen 12
Slika 5. Ugljenica u radu 12
Slika 6. Slaganje ugljenice 14
Slika 7. Drvna sječka 16
Slika 8. Iverač u radu 16
Slika 9. Sustavi pridobivanja šumske biomase u Austriji prema porijeklu, mjestu iveranja i vrsti prevezene biomase (Stampfer i Kanzian 2006) 17
Slika 10. Korištenje šumskog ostatka nakon iznošenja stabala žičarom, skupljanje šumskog ostatka kamionima, neposredno iveranje u kamione za drvnu sječku 18
Slika 11. Korištenje šumskog ostatka nakon potpuno mehaniziranoga pridobivanja drva sortimentnom metodom, neposredno iveranje u kamione za drvnu sječku 19
Slika 12. Korištenje drva za energiju pri sortimentnoj metodi izradbe u sustavu harvester – forvarder, neposredno iveranje u kamione s kontejnerom 20
Slika 13. Korištenje drva za energiju pri stablovnoj metodi izradbe pri radu traktorske ekipaže sa sječnom glavom, neposredno iveranje u kamione za drvnu sječku 21
Slika 14. Iverač na kamionu 21
Slika 15. Briketi 24
Slika 16. Drvni peleti 26
Slika 17. Prikaz procesa proizvodnje drvnih peleta 27
Slika 18. Pretvorba biomase u bioenergiju 30
Slika 19. Logo europskog udruženja za biomasu 32
Slika 20. Položaj Županije Središnja Bosna u središnjem dijelu Bosne i Hercegovine 36
Slika 21. Županija Središnja Bosna 37
Slika 22. Priprema uzoraka četvrтинском metodom 43
Slika 23. Vaganje uzoraka prije sušenja 44
Slika 24. Sušionik BINDER FD 115 44
Slika 25. Natkriveni prostor za piljevinu 49
Slika 26. Utovarivač 49
Slika 27. Bubanjski iverač BRUKS Klockner 50
Slika 28. Sušara SCOLARI 50
Slika 29. Proizvodna linija Rose-wood 50
Slika 30. Proširenje proizvodnog pogona Rose-wood 51
POPIS TABLICA

Tablica 1. Dimenzije i tehnički maseni udio vode u ogrjevnom drvu 10
Tablica 3. Specifikacija svojstava za drvnuglijen prema EN ISO 17225-1 15
Tablica 4. Razredi drvene sječke prema granulometrijskom sastavu prema EN ISO 17225-422 22
Tablica 5. Specifikacija određenih svojstava za drvnu sječku prema EN ISO 17225-4 23
Tablica 6. Kriteriji za ocjenjivanje kakvoće drvnih briketa 25
Tablica 8. Iskaz površina po općinama 37
Tablica 9. Broj stanovnika u Županiji Središnja Bosna 38
Tablica 11. Predviđenapotreba za ogrjevnim drvom u Županiji Središnja Bosna 47
1. Uvod

Od pojave vatre u službi čovjeka, točnije od trenutka kada je *Homo erectus* ovladao umijećem loženja vatre, drvo je bilo i ostalo čovjekov najvažniji izvor energije stotinama tisuća godina. Pojavom fosilnih i nuklearnih goriva upotreba drva kao energenta znatno se smanjila. Ipak, globalno gledano, drvo je još uvijek glavni izvor energije za većinu svjetskog stanovništva. Pored toga, i po načinu upotrebe drva, drvo za proizvodnju energije nalazi se na prvom mjestu (Jovanović i dr. 2008). Naime, preko 50 % posjećenog drva u svijetu iskorišteno se u svrhu proizvodnje različitih oblika energije (FAO 2005).

Šume su od davnina predstavljale jedno od najvećih i najvažnijih prirodnih bogatstava Bosne i Hercegovine. Njihova ekonomska vrijednost dugo vremena nije dolazila do izražaja u odgovarajućoj mjeri. Tek u prvoj polovici XIX. stoljeća počinje povijest bosanskohercegovačkog šumarstva kao posebne gospodarske grane.

Bosna i Hercegovina raspolaže s 3 231 500 ha šuma i šumskog zemljišta što je 63% kopnene površine države.

D drvna zaliha šuma u BiH se procjenjuje na oko 291 milijun m3, od čega na četinjače otpada oko 108 milijuna m3, a na listače oko 183 milijuna m3. Godišnji volumni prirast iznosi 7 942 200 m3, od čega četinjača 3 123 100 m3, a listača 4 819 100 m3. Mogući godišnji obujam sječa iznosi 7 235 500 m3, od čega četinjača 2 589 200 m3, a listača 4 646 300 m3, što je 706 700 m3 manje od godišnjeg volumnog prirasta. Razlog tomu leži u činjenici da je kao posljedica rata ostala velika minirana površina od preko 100 000 ha koja je za duže vremensko razdoblje izgubljena za gospodarenje. Zbog nepotpunih podataka o stanju šuma zbog ratnih djelovanja, a da ne bi došlo do daljnje destrukcije šuma, nakon rata nijedne godine nije realiziran mogući obujam sječa.

Glavne vrste drveća su jela, smreka, bijeli i crni bor, bukva, različite vrste hrasta, a u manje značajnom broju zastupljene su vrste plemenitih listača, kao što su javor, brijest, jasen, te stabla voćkarica (trešnja, jabuka, kruška).

Prosječna potrošnja ogrevnog drva u BiH kućanstvima kreće se oko 7,7 m3 godišnje. Potrošnja ogrevnog drva u ruralnim i poluurbanim područjima je veća oko 15 % u odnosu na potrošnju u urbanim područjima (Agencija za statistiku BiH 2015).

Korištenje šuma u BiH prošlo je kroz određene razvojne stadije. U svom razvoju iskorištavanje šuma u BiH prošlo je put od proste robne proizvodnje i podmirivanja potreba naturalne proizvodnje, pa sve do kapitalističkog načina robne proizvodnje u okviru manufakturne, a zatim i industrijske prerade drva. Opseg, način korištenja i ekonomska važnost proizvoda šuma odražava se u odnosu ljudi prema šumi i u mjerama za čuvanje i zaštitu šuma kao objekta iskorištavanja (Musić i dr. 2013).

Državne institucije BiH uređivale su i različite šumsko-vlasničke odnose. Za vrijeme Otomanske države šumsko-vlasnički odnosi su počivali na osnovama šerijatskog
prava i kanonskog zakonodavstva. Prema njima, šume su tretirane kao javno dobro i kao takve nisu mogle biti predmet privatnog vlasništva i posjeda (Begović 1960).

Od 1878. godine Austro-Ugarska provodi reguliranje šumsko-vlasničkih odnosa. Tada se priznaju prava privatnih šuma i vrši izdvajanje državnih šuma koje se daju na raspolaganje stranim kapitalistima. Paralelno sa iskorištavanjem šuma putem dugoročnih ugovora pristupilo se i eksploataciji državnih šuma BiH u vlastitoj režiji (Begović 1978).

Za vrijeme Kraljevine Jugoslavije nastavljena je velika eksploatacija šuma. To je dovelo do devastacije i pojave masovnih oboljenja šuma. Sredinom tridesetih godina XX. stoljeća uspostavljena je čvršća veza između iskorištavanja i obnove šuma te je šumarstvo krenulo naprijed (Begović 1985).

Poslije Drugog svjetskog rata u relativno kratkom vremenu obnovljeni su i podignuti rasadnici te se pristupilo pošumljavanju širih razmjera. Izrađena je dugoročna osnova obnove šuma. Zakon o šumama, donesen 1978. godine veoma dobro je regulirao brojna pitanja gospodarenja šumama (Begović 1985)

Kapacitete drvne industrije 80-ih činilo je 220 različitih srednjih i velikih firmi, pretežno organiziranih u okviru »Šipada« i »Konjuha« (83%), i »Krivaje« (17%). Kapaciteti drvne

Nesumnjivo je da su do sada ostvareni rezultati u sektoru drvne industrije dobrim dijelom posljedica njezinih komparativnih prednosti (velik udio domaćih sirovina, relativno niska ulaganja u pojedine objekte itd.). No, komparativne prednosti nisu dovoljne za daljnji opstanak i razvoj. Otuda i potreba za poticajem njezinih konkurentskih i izvoznih sposobnosti, u budućnosti orijentiranih ka većoj finalnoj proizvodnji (Iličić 2011).

Pored ovih napomena, prevlada opća ocjena da iskorištenost drva i šumskog potencijala, funkcionalnost i raspoloživost kapaciteta za preradu drva nisu na zadovoljavajućem nivou. Također je evidentno da nema koordiniranog strateškog sektorskog i međusektorskog pristupa za razvoj ove gospodarske grane iako se radi o poslovnim sustavima koji čine povezan lanac u stvaranju dodatne vrijednosti (Obućina i dr. 2010).

Iskorištavajući šumske ostatke nakon pridobivanja drva, šumarska poduzeća imaju mogućnost ostvariti veću ekonomsku korist uz istodobno održavanje šumskogreda u sastojinama.

Proizvodnjom tehnološki naprednijih oblika čvrstih biogoriva od ostataka nakon primarne obrade drva, drvnoindustrijska poduzeća imaju priliku proizvoditi biogoriva kojima je gotovo osiguran tržišni plasman. Na taj način rješavaju se problema skladištenja te sirovine uz stvaranje dodane vrijednosti proizvoda.

Korištenje šumske biomase kao važnog oblika iskorištavanja obnovljivih izvora energije u globalnim razmjernima ima sve važniju ulogu, a bitno je za donošenje nacionalnih strateških odluka. Sveobuhvatno korištenje šumske biomase velik je doprinos društvu, a posebno ekonomiji lokalnih zajednica, jer se time mogu riješiti važna socio-ekonomska pitanja (Zečić dr. 2015).
2. Problematika

2.1 Organizacija šumarstva i prerade drva na razini Federacije BiH

Prema zakonu o šumama Federacije BiH, federalni ministar je ugovorom prenio poslove upravljanja i gospodarenja šumama županijskim ministirima nadležnima za poslove šumarstva. U okviru Federalnog ministarstva poljoprivrede, vodoprivrede i šumarstva, formirana je Federalna uprava za šumarstvo koja ima funkciju planiranja razvoja šumarstva, a u sastavu županijskih ministarstava formirane su županijske uprave za šumarstvo koje imaju funkciju planiranja i administrativnog nadzora nad gospodarenjem državnim i privatnim šumama.

U Federaciji BiH skupštine svih deset Županija formiraju po jedno šumskogospodarsko društvo na području Županije, kojem županijski ministar nadležan za poslove šumarstva ugovorom prenosi poslove gospodarenja državnim šumama u trajanju od pet godina i društvo je za svoj rad odgovorno županijskom ministarstvu.

Unutar županijskih šumskogospodarskih društava nadležnost za poslove šumarstva je povjerena šumarijama koje su osnovane u svakoj općini po jedna.

Na svim administrativno-političkim razinama, šumarstvo je u nadležnosti ministarstava poljoprivrede, vodoprivrede i šumarstva (u nekim slučajevima, ministarstava gospodarstva), dok je drvoprerađivačka industrija (primarna drvoprerađa, proizvodnja celuloze i papira) u nadležnosti ministarstava industrije, energetike i rudarstva. Također postoji razlika po pitanju vrste gospodarskih subjekata koji se bave šumarstvom (javna poduzeća čiji su osnivači županijske vlasti u FBiH) i drvoprerađivačkom industrijom (uglavnom privatna poduzeća).

Institucionalna organiziranost drvne industrije pripada Federalnomu ministarstvu energije, rudarstva i industrije koje se njegovim sektorem industrije ima obzir na energiju i rudarstvo, praktično se može utvrditi da je drvna industrija u tom ministarstvu prilično marginalizirana odnosno neravnopravna s drugim sektorima (Musić i dr. 2013).

Šume i šumska zemljišta u Federaciji Bosne i Hercegovine se prostiru na površini od oko 1 519 997 ha, od čega su u državnom vlasništvu oko 1 242 997 ha ili 82 %, a u privatnom vlasništvu drugih pravnih osoba oko 277 000 ha ili 18 %.

Površina visokih šuma sa prirodnom obnovom je 572 902,9 ha, ili oko 39 %. Ovo je u odnosu na stanje i značaj ovih šuma na kojima se zasniva šumska proizvodnja relativno malo. Visokih degradiranih šuma ima 15 924,8 ha ili 1 %. Značajan udio u ukupnoj površini pod šumom čine i umjetno podignuti nasadi-kulture sa i bez procijenjenog drvnog obujma kojih ima 62 987,4 ha, ili 5 %. Udio panjača u ukupnoj površini pod šumom je 257 094,8 ha, što je 20 %. Produktivnih goleti koje su pogodne za pošumljavanje ima oko 166 192,5 ha, što iznosi 13 % i predstavljaju površine na kojima se pošumljavanjem odgovarajućim vrstama drveća u skladu sa prirodnim i ekološkim uvjetima može povećati površina pod šumom. Značajan problem za
šumarstvo Federacije BiH predstavlja oko 125.190,1 ha, ili 10 % svih kategorija šuma i šumskih zemljišta za koje se zna ili se pretpostavlja da su minirane.

Ukupna drvena zaliha svih šuma u državnom vlasništvu Federacije BiH iznosi 161 294 352 m³. Drvna zaliha četinjača iznosi 62 058 507 m³ što je oko 38 %, a listača 99 235 845 m³ ili 62 %. U strukturi drvene zalihe visoke šume su zastunjene sa 86,4 % a panjače sa 13,6 %. Prosječna drvena zaliha iznosi 192,4 m³/ha (kod visokih šuma 243,3 m³/ha, a kod panjača 85,2 m³/ha).

Ukupni godišnji volumni prirast svih šuma iznosi 4 418 953 m³, od toga na četinjače otpada 1 875 274 m³ što je oko 42 %, a na listača 2 543 679 m³ što je oko 58 %. Od ukupne količine prirasta na visoke šume otpada 81,2 % a na panjače 18,8 %. U visokim šumama prosječni godišnji volumni prirast iznosi 6,26 m³/ha, dok je kod panjača 3,23 m³/ha, odnosno prosječno za sve šume 5,27 m³/ha.

Ukupni sječivi etat iznosi 3 068 322 m³ (krupno drvo), od toga na četinjače otpada 1 343 940 m³ što je 44 %, a na listača 1 724 382 m³ ili oko 56 %. Sječivi etat se uglavnom realizira u visokim šumama i iznosi 2 674 336 m³ što je oko 87,2 % od ukupnog etata, a u panjačama 393 986 m³ što je 12,8 %. Količina sječivog etata po jedinici površine kod visokih šuma iznosi 4,66 m³/ha, a kod panjača 1,53 m³/ha. Iz odnosa godišnjeg volumnog prirasta i sječivog etata vidljivo je da je godišnji sječivi etat manji od godišnjeg volumnog prirasta za 1 350 631 m³, odnosno da iznosi 69 % prirasta. Sječivi etat je manji od godišnjeg volumnog prirasta, što se pozitivno odražava na stanje drvnih zaliha, a to direktno utječe na očuvanje i povećanje drvnog fonda. No, smanjenje etata, povećana potražnja kao i ogromna razlika između proizvodnih mogućnosti i instaliranih kapaciteta su generatori bespravnih sječa četinjača. Eskalacija bespravnih sječa ogrjevnog drva je odraz teškog socijalnog stanja, nedostatka alternativnih energenata, kao i visoka cijena ostalih izvora energije (Informacija o gospodarenju šumama u Federaciji BiH u 2015. godini i planovima gospodarenja šumama za 2016. godinu 2016).

Problem realizacije manje vrijednih drvnih sortimenata, naročito listača, ostaje neriješen dok se u drvenoj industriji ne osiguraju kapaciteti za njihovu preradu. Preporuka Ministarstva i jedan od zaključaka Vlade Federacije BiH je da šumskogospodarska društva moraju provoditi sve mjere propisane šumskogospodarskim osnovama sa naglaskom na realizaciju etata u kulturama sa procijenjenim drvenim obujmom i šumama niskog uzgojnog oblika.

Kod proizvodnje drva četinjača plan za 2015. godinu je premašen za 78 975 m³ ili za 7 %, ali je posjećena količina još uvijek u okviru dozvoljenog etata. Plan proizvodnje listača je ostvaren sa 91 %. Uvidom u šumskogospodarske osnove, utvrđeno je da dozvoljeni sječivi etat iznosi 2 904 187 m³. Izvršenje sječa već duže vremensko razdoblje se ne planira u punom iznosu dozvoljenog etata i za period od posljednjih 7 godina iznosi prosječno 2,26 milijuna m³ ili oko 74 % od dozvoljenog.
U 2015. godini od ukupno realiziranog drvnog obujma četinjača, na tehničku oblovinu (furnirske trupce, pilanske trupce i ostalu tehničku oblovinu) otpada oko 68 % što iznosi 706 014 m³. Proizvodnja celuloznog drva u 2015. godini iznosila je 327 275 m³ ili 32 %, a ogrjevnog drva 1939 m³ ili svega 0,2 % ukupno realiziranog drvnog obujma četinjača.

2.2 Čvrsta biogoriva

2.2.1 Ogrjevno drvo

Ogrjevno drvo (eng. firewood, njem. Brennholz) predstavlja najzastupljeniji energet u kućanstvima za proizvodnju topline. Da bi poslužilo svojoj svrsi mora proći proces prerade u kratko rezano i cijepano ogrjevno drvo. U velikom dijelu ruralnih, ali i u urbanim područjima ogrjevno drvo se koristi kao energet za zagrijavanje prostora i pripremu tople vode. Osobito se to odnosi na područja do kojih nije stigla plinska
mreža. Ako promatramo ogrjevno drvo, kao trgovacku robu, ono se izrađuje s korom, od svih vrsta drveća i to samo od onih stabala i dijelova stabala koji nisu upotrebljivi u korisnije svrhe (tehnički i financijski pogodnije). Ogrjevno drvo kao i svaka trgovacka roba mora zadovoljavati određene zahtjeve u pogledu oblika, dimenzija, stupnja vlažnosti, valjanosti obrade te slaganja (Janković 1987).

Učinkovitost prerade obloga energijskoga drva u kratko rezano i cijepano ogrjevno drvo definira naravno utrošak vremena po jedinici proizvoda, ali svakako i kakvoća proizvoda (Vusić i dr. 2015). Današnje tehnologije prerade energijskoga obloga drva u kratko rezano i cijepano ogrjevno drvo usmjere su upravo na povećanje kakvoće istoga te smanjenje broja radnih operacija u samom proizvodnom procesu kako bi se povećala učinkovitost strojeva i smanjili troškovi proizvodnje. Kontrola kakvoće je potrebna kako bi se proizvelo čvrsto biogorivo najbolje moguće kakvoće s obzirom na postojeću sirovinu, odnosno radi izbjegavanja prerade vrsne sirovine u čvrsto biogorivo slabe kakvoće (Vusić i dr. 2014).

![Slika 1. Kratko rezano i cijepano drvo](www.ogrjev.hr)

Proizvodnja ogrjevnog drva

Ovisno o primijenjenom procesu izrade ogrjevnog drva koji može biti ručni ili mehanizirani koriste se razni alati ili strojevi poput motorne pile, sjekire, hidrauličnih cjepača, kružne pile, klinova i procesora.

Ručni cjepački posao spada u teške i zahtjevne fizičke poslove u šumarstvu, što je ujedno razlog da se zamijeni radom strojeva. Neki strojevi rade na način cjepača, prodiranjem kлина u drvo ili njegovim presijecanjem. Oblo se drvo, tzv. oblice, mora uzdužno cijepati u manje prizmatične komade ukoliko je promjer veći od 14 cm, da bi se omogućilo njegovo sušenje te spriječilo truljenje (Risović i dr. 2003).

Bašić Palković (2002) kao tehnike koje se primjenjuju u svrhu dorade i izrade ogrjevnog drva navodi sljedeće: prepijivanje, cijepanje i sječenje. Prepijivanje je presijecanje
Drvnih vlakanaca, obično u okomitoj ili paralelnoj ravnini s obzirom na drvana vlakanca, a tim se postupkom treba savladati čvrstoća drva, te trenje i uklještenje. Piljenje se obično vrši pilama lančanicama te kružnim pilama. Cijepanje je rastavljanje žice drva po dužini. Pri tome se javljaju otpori čvrstoće drva prema cijepanju tj. elastičnost drva. Čvrstoća na cijepanje je definirana kao otpor što ga drvo pruža u rastavljanju svoje mase na dva dijela u longitudinalnom smjeru. Cijepanje se obično vrši prodiranjem klina kroz drvo. Sječenje je rastavljanje drvnih vlakanaca pod određenim kutom (3 do 90°). Ako je kut manji od 3° to se naziva tesanje, a ako je jednako 0°, to je već cijepanje.

Kako bi se podigao stupanj proizvodnosti rada, zaštite i sigurnosti na radu te humanizirao rad na proizvodnji ogrjevnog drva, teški ručni rad zamjenjuje se strojevima – cjepačima. Osim veće učinkovitosti proizvodnje, rad postaje i ergonomski povoljniji (Risović i dr. 2003).

Izrada ogrjevnoga drva može se odvijati u šumi ili na stovarištu te u specijaliziranim pogonima za izradu ogrjevnog drva. Izrada u šumi ili na stovarištu predstavlja najjednostavniju metodu izrade ogrjevnog drva. Karakteristike izrade na stovarištu su mali proizvodni prostor, mali broj radnika i mobilni strojevi. Potreban je cjepač na vlastiti pogon, motorna pila ili manji mobilni procesor te sjekira. Tako izrađeno drvo se odmah nakon izrade utovaruje i isporučuje kupcu.

Izrada u specijaliziranim pogonima podrazumijeva postojanje postrojenja za izradu ogrjevnog drva. Postrojenje za proizvodnju ogrjevnog drva možemo podijeliti na slijedeće dijelove: stovarište, pogon prerade drva i skladište gotovih proizvoda. Višemetarsko oblo energijsko drvo sa stovarišta se prevozi pomoću viličara,

utovarivača ili nekog drugog stroja u pogon proizvodnje ogrjevnog drva. Sam proces obrade je jednostavan te se odvija na jednom ili više cjepača drva i/ili profesionalnim linijama za rezanje i cijepanje. Iz takve linije izlazi gotov proizvod te slijedi proces slaganja i skladištenja. Proizvod se slaže na paletama i u mrežama. Tako složeno ogrjevno drvo se prenosi viličarem na skladište gotovih proizvoda.

Kakvoća ogrjevnog drva

Drvo za ogrjev, na temelju norme koja se i danas operativno koristi (JUS D.B5.023 1984), možemo promatrati kroz sljedeće značajke:

1. Vrste drva:
 - drvo tvrdih listača (bukva, grab, cer, bagrem, javor, jasen, brijest, klen i voćkarice),
 - drvo mekih listača (breza, joha, lipa, topola, vrba),
 - drvo četinjača (bor, smreka, jela, ariš).

2. Oblik:
 - cjepanice – komadi drva duljine 1 m, s dozvoljenim odstupanjem od ± 5 cm. Izrađuju se cijepanjem oblog drva promjera 15 cm naviše koje je s oba kraja prerazano pilom. Tetiva luka cijepanice iznosi 10 do 25 cm;
 - oblice – izrađuju se od oblog drva, koje je s oba kraja prepiljeno pilom. Oblice su duljine kao i cjepanice, a promjera 7 do 25 cm;
 - sječenice – izrađuju se od oblog drva koje je na oba kraja presječeno sjekirm ili pilom. Promjera su 3 do 7 cm, a duljine su od 0,90 do 1,20 m;
 - gule – kvrgavi komadi drva, teško cjepivi, debljine od 15 do 40 cm, a duljine od 0,50 do 1,20 m;
 - panjevina – komadi drva dobiveni cijepanjem panja debljine 15 do 40 cm;
 - otpaci – komadi drva koji otpadaju pri sječi, rezanju, cijepanju, tesanju i koranju u šumi, na pilani i CMS-u. Komadi drva su debljine 0,50 do 25 cm, širine 2 do 25 cm i duljine 15 do 120 cm.

3. Kvaliteta:
 - I klasa – cjepanice i oblice. Dopuštene su kvrge svih vrsta i veličina, natrulost do 10 % od isporučene količine, 30 % prozuklih komada od isporučene količine, visina luka do 15 cm, neograničena usukanost;
 - II klasa – cjepanice i oblice koje ne pripadaju I klasu te gule duljine 0,5 do 1,2 m i debljine 25 do 40 cm. Dopušta se zakrivljenost, usukanost je neograničena, 20 % trulih komada i 50 % prozuklih komada od isporučene količine, kvrge svih vrsta i veličina, komadi u obliku kratica koje zajedno čine duljinu i do 10 % od isporučene količine;
 - Sječenice – dopuštene sve kvrge, prozukli i natruli komadi do 30 % isporučene količine. Panjevina – zdrava, očišćena od zemlje i kamenja. Dopušta se 30 % prozuklih i natrulih komada i nečistoće do 5 % obujma drva;
Otpaci – dopušta se 30 % natrulih i prozuklih komada.

4. Udio vode:

- sirovo – otprilike do 1 mjesec poslije sječe, s udjelom preko 40 % vode;
- šumski suho – oko 6 mjeseci poslije sječe, s udjelom vode 22 – 40 %;
- prosušeno – s udjelom vode od 8 – 22 %
- zračno suho – od 1 do 2 godine nakon sječe.

Tablica 1. Dimenzije i tehnički maseni udio vode u ogrjevnom drvu

<table>
<thead>
<tr>
<th>Duljina (L) cm</th>
<th>Promjer (D) cm</th>
<th>Tehnički maseni udio vode (M) w - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 20 - < 20 cm</td>
<td>D 2 - D < 2 cm</td>
<td>M 10 ≤ 10 %</td>
</tr>
<tr>
<td>L 20 20 cm ± 2 cm</td>
<td>D 5 - 2 cm ≤ D ≤ 5 cm</td>
<td>M 15 ≤ 15 %</td>
</tr>
<tr>
<td>L 25 25 cm ± 2 cm</td>
<td>D 10 - 5 cm ≤ D ≤ 10 cm</td>
<td>M 20 ≤ 20 %</td>
</tr>
<tr>
<td>L 30 30 cm ± 2 cm</td>
<td>D 15 - 10 cm ≤ D ≤ 15 cm</td>
<td>M 25 ≤ 25 %</td>
</tr>
<tr>
<td>L 33 33 cm ± 2 cm</td>
<td>D 20 - 10 cm ≤ D ≤ 20 cm</td>
<td>M 30 ≤ 30 %</td>
</tr>
<tr>
<td>L 40 40 cm ± 2 cm</td>
<td>D 25 - 10 cm ≤ D ≤ 25 cm</td>
<td>M 35 ≤ 35 %</td>
</tr>
<tr>
<td>L 50 50 cm ± 4 cm</td>
<td>D 35 - 20 cm ≤ D ≤ 35 cm</td>
<td>M 40 ≤ 40 %</td>
</tr>
<tr>
<td>L 100 100 cm ± 5 cm</td>
<td>D 35 + > 35 cm</td>
<td>M 45 ≤ 45 %</td>
</tr>
<tr>
<td>L 100 + > 100 cm navesti maksim. vrijednost</td>
<td>M 55 ≤ 55 %</td>
<td></td>
</tr>
</tbody>
</table>

Tablica 2. Tehnički maseni udio vode u ogrjevnom drvu

<table>
<thead>
<tr>
<th>Duljina (L) cm</th>
<th>Promjer (D) cm</th>
<th>Tehnički maseni udio vode (M) w - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 20 - < 20 cm</td>
<td>D 2 - D < 2 cm</td>
<td>M 10 ≤ 10 %</td>
</tr>
<tr>
<td>L 20 20 cm ± 2 cm</td>
<td>D 5 - 2 cm ≤ D ≤ 5 cm</td>
<td>M 15 ≤ 15 %</td>
</tr>
<tr>
<td>L 25 25 cm ± 2 cm</td>
<td>D 10 - 5 cm ≤ D ≤ 10 cm</td>
<td>M 20 ≤ 20 %</td>
</tr>
<tr>
<td>L 30 30 cm ± 2 cm</td>
<td>D 15 - 10 cm ≤ D ≤ 15 cm</td>
<td>M 25 ≤ 25 %</td>
</tr>
<tr>
<td>L 33 33 cm ± 2 cm</td>
<td>D 20 - 10 cm ≤ D ≤ 20 cm</td>
<td>M 30 ≤ 30 %</td>
</tr>
<tr>
<td>L 40 40 cm ± 2 cm</td>
<td>D 25 - 10 cm ≤ D ≤ 25 cm</td>
<td>M 35 ≤ 35 %</td>
</tr>
<tr>
<td>L 50 50 cm ± 4 cm</td>
<td>D 35 - 20 cm ≤ D ≤ 35 cm</td>
<td>M 40 ≤ 40 %</td>
</tr>
<tr>
<td>L 100 100 cm ± 5 cm</td>
<td>D 35 + > 35 cm</td>
<td>M 45 ≤ 45 %</td>
</tr>
<tr>
<td>L 100 + > 100 cm navesti maksim. vrijednost</td>
<td>M 55 ≤ 55 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duljina (L) cm</th>
<th>Promjer (D) cm</th>
<th>Tehnički maseni udio vode (M) w - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 20 - < 20 cm</td>
<td>D 2 - D < 2 cm</td>
<td>M 10 ≤ 10 %</td>
</tr>
<tr>
<td>L 20 20 cm ± 2 cm</td>
<td>D 5 - 2 cm ≤ D ≤ 5 cm</td>
<td>M 15 ≤ 15 %</td>
</tr>
<tr>
<td>L 25 25 cm ± 2 cm</td>
<td>D 10 - 5 cm ≤ D ≤ 10 cm</td>
<td>M 20 ≤ 20 %</td>
</tr>
<tr>
<td>L 30 30 cm ± 2 cm</td>
<td>D 15 - 10 cm ≤ D ≤ 15 cm</td>
<td>M 25 ≤ 25 %</td>
</tr>
<tr>
<td>L 33 33 cm ± 2 cm</td>
<td>D 20 - 10 cm ≤ D ≤ 20 cm</td>
<td>M 30 ≤ 30 %</td>
</tr>
<tr>
<td>L 40 40 cm ± 2 cm</td>
<td>D 25 - 10 cm ≤ D ≤ 25 cm</td>
<td>M 35 ≤ 35 %</td>
</tr>
<tr>
<td>L 50 50 cm ± 4 cm</td>
<td>D 35 - 20 cm ≤ D ≤ 35 cm</td>
<td>M 40 ≤ 40 %</td>
</tr>
<tr>
<td>L 100 100 cm ± 5 cm</td>
<td>D 35 + > 35 cm</td>
<td>M 45 ≤ 45 %</td>
</tr>
<tr>
<td>L 100 + > 100 cm navesti maksim. vrijednost</td>
<td>M 55 ≤ 55 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duljina (L) cm</th>
<th>Promjer (D) cm</th>
<th>Tehnički maseni udio vode (M) w - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 20 - < 20 cm</td>
<td>D 2 - D < 2 cm</td>
<td>M 10 ≤ 10 %</td>
</tr>
<tr>
<td>L 20 20 cm ± 2 cm</td>
<td>D 5 - 2 cm ≤ D ≤ 5 cm</td>
<td>M 15 ≤ 15 %</td>
</tr>
<tr>
<td>L 25 25 cm ± 2 cm</td>
<td>D 10 - 5 cm ≤ D ≤ 10 cm</td>
<td>M 20 ≤ 20 %</td>
</tr>
<tr>
<td>L 30 30 cm ± 2 cm</td>
<td>D 15 - 10 cm ≤ D ≤ 15 cm</td>
<td>M 25 ≤ 25 %</td>
</tr>
<tr>
<td>L 33 33 cm ± 2 cm</td>
<td>D 20 - 10 cm ≤ D ≤ 20 cm</td>
<td>M 30 ≤ 30 %</td>
</tr>
<tr>
<td>L 40 40 cm ± 2 cm</td>
<td>D 25 - 10 cm ≤ D ≤ 25 cm</td>
<td>M 35 ≤ 35 %</td>
</tr>
<tr>
<td>L 50 50 cm ± 4 cm</td>
<td>D 35 - 20 cm ≤ D ≤ 35 cm</td>
<td>M 40 ≤ 40 %</td>
</tr>
<tr>
<td>L 100 100 cm ± 5 cm</td>
<td>D 35 + > 35 cm</td>
<td>M 45 ≤ 45 %</td>
</tr>
<tr>
<td>L 100 + > 100 cm navesti maksim. vrijednost</td>
<td>M 55 ≤ 55 %</td>
<td></td>
</tr>
<tr>
<td>Svojstva klase</td>
<td>Oznaka</td>
<td>A1</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>Porijeklo i izvor</td>
<td>Oblovina; Kemijski netretirani drvni ostaci</td>
<td>Cijela stabla bez korijenja; oblovina; ostaci od pridobivanja drva; Kemijski netretirani drvni ostaci</td>
</tr>
<tr>
<td>Vrsta drva</td>
<td>Potrebno navesti</td>
<td>Potrebno navesti</td>
</tr>
<tr>
<td>Promjer, D^a</td>
<td>cm</td>
<td>$D_2 \leq 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2 \leq D \leq 5$</td>
</tr>
<tr>
<td>Duljina, L^b</td>
<td>cm</td>
<td>$L_20 \leq 20$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_25 \leq 25$</td>
</tr>
<tr>
<td>Udio vode, M</td>
<td>w-%</td>
<td>$M_{20} \leq 20$</td>
</tr>
<tr>
<td></td>
<td>na mokroj osnovi</td>
<td>$M_{20} \leq 20$</td>
</tr>
<tr>
<td>Obujam ili masa</td>
<td>m3 ili kg</td>
<td>Navesti volumen ili masu kod maloprodaje</td>
</tr>
<tr>
<td>Udio rascijepljenog obujma</td>
<td>% od komada</td>
<td>$\geq 90%$</td>
</tr>
</tbody>
</table>

a 85 % ogrjevnog drva treba biti navedenog promjera.

b Duljina može biti u granicama ± 2 cm. 15 % ogrjevnog drva može biti kraće od normom propisane duljine unutar granica klase.

2.2.2 Drvni ugljen

Drvni ugljen (eng. charcoal, njem. Kohle) je kruti ostatak pirolize (karbonizacije) drva pod kontroliranim uvjetima u zatvorenom prostoru. Postoje različiti načini proizvodnje
Drveni ugljen. Najčešće se proizvodi od drva, međutim, moguća je proizvodnja iz gotovo svih biljnih i nekih životinjskih materijala (Gujić 2015). Drveni ugljen je gorivo koje se koristi širom svijeta. Primjenu pronalazi u metalurgiji, proizvodnji topline u kućanstvima, u pripremi roštilja i drugim djelatnostima. Korištenje drvenog ugljena poznato je gotovo tijekom čitave povijesti čovječanstva, a prvi tragovi potječu još prije 30 000 godina kada su njime nacrtani prvi spiljski crteži. Proizvodnja drvenog ugljena datira još iz Brončanog doba i bila je ključna za razvoj metalurgije, sve do prijelaza na fosilni ugljen na početku 18. stoljeća. Pri procesu pougljavanja drva dešavaju se u drvu izvjesne fizičke i kemijske promjene te se mijenjaju njegova tehnička svojstva. Iz drva izlazi voda, umanjuje se njegova težina, utječe se dimenzije, smanjuje se obujam, mijenja boja, gubi miris, narušava tvrdoća i čvrstoća. Dakle, pougljavanje drva je proces koji po svojoj prirodi stoji u sredini između izgaranja drva i suhe destilacije drva (Ugrenović 1957). U novije vrijeme, drveni ugljen je ostao tehnološki važan materijal zbog svojih svojstava upijanja (Domac i dr. 2008). Svojstvo apsorpcije ugljena ovisi o vrsti drva i određuje kvalitetu ugljena. Upijanje je veće, što je veća poroznost, a što manja tvrdoća i težina (Ugrenović 1957). Prema Denzu (1910) ugljen može apsorbirati 4 do 21 % svoje težine. Ugljen se ne sastoji iz čistog ugljika. Sadržaj ugljika kreće se od 75 % do 80 %, kisika od 8 % do 12 %, vodika od 1,5 % do 2,3 %, pepela od 1,0 % do 2,5 % i higroskopske vode od 6% do 12%. Prema standardu drveni ugljen je definiran kao proizvod dobiven pougljavanjem drva u retortama ili žežnicama. Propisana sirovina za proizvodnju drvenog ugljena je drvo listača i četinjača, bez truleži. Značajke drvenog ugljena su odsutnost mirisa i okusa, izostanak smeđih nepougljenih dijelova drva, jasan zvuk na udarcu, otpornost na manji pritisak, laka zapaljivost i mirno sagorijevanje slabim plavkastim plamenom bez dima.

Potražnja za drvenim ugljenom i danas je razmjerno velika i stalno raste. Ukupna svjetska potrošnja se prema FAO procjenjuje na 40,5 milijuna tona godišnje od čega samo u Africi 19,8 milijuna tona (Domac i dr. 2008).
Proizvodnja drvnog ugljena

Proizvodnja drvnog ugljena uključuje termičku razgradnju drva i može se odvijati u otvorenim jamama, pećima ili retortama. Tradicionalna proizvodnja u jamama ili pećima odvija se uz više ili manje kontrolirani dovod zraka, pri čemu se toplina razvija izgaranjem dijela drva. Takva proizvodnja koja se u pravilu odvija u ruralnim područjima vrlo je neefikasna, a učinkovitost pretvorbe uobičajeno iznosi 10 do 15 %, odnosno, za 1 kg drvnog ugljena je potrebno 7 do 10 kg drva. Učinkovitost suvremenih sustava retorti je znatno viša i može iznositi i do 30 % uz znatno smanjenje emisije štetnih tvari (Domac i dr. 2008). U retortama, drvni ugljen se proizvodi bez prisutnosti zraka pri čemu se toplina mora dovesti iz drugog izvora (www.drveniugljen.hr).

Postupak proizvodnje drvnog ugljena u ugljenicama detaljnije opisuje Dubravec (2007). Prvi korak kod proizvodnje drvnog ugljena je nabavka drvnog materijala. Proizvođači drvnog ugljena često pristupaju izradi drva u samoizradi, ponajviše zbog smanjenja troškova cjelokupnog procesa. Nakon toga je potrebno drvnini materijal transportirati do mjesta proizvodnje tj. ugljenice. Iza toga slijedi čišćenje rupa na ugljenici začepljenih zemljom zbog omogućavanja izlaska dima i djelomičnog ulaska zraka u ugljenicu. Sljedeći korak je slaganje podnica u ugljenici, oblicama promjera 10 cm – 15 cm i duljine 1,5 m do 2 m. Podnice se slažu zrakasto tako da su sredini ugljenice spojene. Na podnice se slaže granjevina od 10 cm promjera, horizontalno i u visinu 50 cm do 60 cm. Sitnije drvo se slaže što niže zbog težeg pougljavanja. Ostatak drvnog materijala se slaže na način da se deblji krajevi komada slažu do zida, a sitniji i nepougljeni komadi iz prošlog ciklusa u sredinu. Nakon što se ugljenica napuni do vrha donjeg otvora, ostatak se slaže kroz otvor na vrhu pazeći pri tome da se zadnji redovi napune sitnom granjevinom zbog lakše potpale i početka pougljavanja. Nakon što se ugljenica napuni do gornjeg vrha, donji otvor se zatvara, vatra se potpali i čeka dalje pougljavanje u prosjeku traje 10 – 15 dana ovisno o suhoći i vrsti drva. Kako bi se povećala količina proizvedenog ugljena u jednom ciklusu, potrebno je svako jutro i večer nadopunjavati ugljenicu u obliku proizvodnje prvog sustava pougljavanjem dijela drva.

Pougljavanje završava kada se gornje rupe zatvore zemljom, a to je obično dan nakon pougljavanja zadnje rupe. Nakon toga slijedi hlađenje ugljenice koje traje 7 – 8 dana. Vađenje ugljena se vrši nakon što se ugljenica ohladi te se potom pakira. Vađenje ugljena se obavlja kroz donji otvor pomoću transportera koji se sastoji od elektromotora, gumene trake, sita i postolja koje nosi sve navedene dijelove.
Kakvoća drvnog ugljena

Pod svojstva drvnog ugljena spadaju njegova građa, kemijska svojstva, vanjski izgled, težina i snaga sagorijevanja. Drvni ugljen djelomično zadržava građu drva, golim okom možemo zamijetiti anatomske tvari poput vlakanaca i sržnih trakova. Provodni elementi nisu uočljivi jer su ispunjeni produktima destilacije. Boja poprima sivo crni do tamno crni ton, uz mogući modri odsjaj. Sjaj se javlja samo na lomovima. Ugalj karakterizira poroznost, mekoća i mala masa zbog gubitka vode te utezanja drva za vrijeme zagrijavanja i pougljavanja (Ugrenović 1957).

Prema JUS D. B9.020 s obzirom na vrstu drva (sirovine) razlikuje se:
- bukov ugljen (od čiste bukovine ili sa primjesom grabovine),
- hrastov ugljen (od čiste hrastovine ili sa primjesom cerovine ili nekog drugog tvrdog drva),
- ugljen mekih listača i
- jelov ili smrekov ugljen.

Retortni drvni ugljen i ugljen iz žežnica dijele se prema krupnoći u tri kvalitete:
Kvaliteta I. - drvni ugljen krupnoće iznad 3 cm na dan utovara kod proizvodnog poduzeća s tolerancijom od 5 % krupnoće ispod 3 cm. Ovdje spada i drvni ugljen u šipkama (cannella) promjera od 2 cm do 8 cm, koji je proizведен od svježih bukovih ili grabovih grana i ne smije sadržavati sitni ugljen.
Kvaliteta II. – drvni ugljen krupnoće od 0,5 cm do 3 cm na dan utovara kod proizvodnog poduzeća s tolerancijom od 8 % krupnoće ispod 0,5 cm.
Kvaliteta III. – drvni ugljen u prašini, krupnoće zrna do 0,5 cm (Ugrenović 1957).
2.2.3 Drvna sječka

Drvna sječka je (eng. woodchips, njem. Holz HACKNITZEL, Hackgut) prema normi EN ISO 16559:2014 definirana kao usitnjena drvna biomasa u obliku čestica određene veličine proizvedenih mehaničkim postupkom oštrim sječivom. Prema porijeklu izvorište drvne biomase za proizvodnju drvne sječke mogu biti prirodne šume ili plantaje, ostatak drvno-industrijske prerade, reciklirano drvo ili mješavine navedenih kategorija (Vusić i Pandur 2010). Drvna sječka je jedan vrlo raznolik izvor energije, većina značajki joj je zadana i ograničava mogućnost poboljšanja kvalitete tijekom proizvodnog procesa (Vusić 2013). Prvenstveno se to odnosi na kemijski sastav drvne biomase, koji zbog većeg udjela kisika i vodika naspram ugljika rezultira manjom kaloričnom vrijednošću u usporedbi s fosilnim gorivima (McKendry 2002). Stoga, preostalim malobrojnim značajkama kojima se može manipulirati tijekom procesa pretvorbe iz sirovine (drvne biomase) u koristan oblik šumskog drvnog goriva kojim je lako rukovati u lancu dobave (drvnu sječku) treba posvetiti posebnu pažnju. Ako je šumsko biogorivo uskladišteno na optimalan način i usitnjeno u optimalno vrijeme udio vode može se značajno smanjiti, a smanjenje udjela vode smanjuje trošak pridobivanja i povećava učinkovitost proizvodnje energije. Korištenjem prikladnih i dobro održavanih strojeva za usitnjavanje drvne biomase moguće je neposredno utjecati na poboljšanje granulometrijske strukture drvne sječke, naravno ovisno o početnim značajkama i strukturi raspoložive sirovine. Tijekom svih faza u lancu dobave u kojima se rukuje...
šumskim biogorivom posebna se pažnja mora posvetiti smanjenju kontakta s onečišćujućim anorganskim tvarima (zemljom, pijeskom, kamenom) kako bi se udio pepela održao na nivou što bližem izvornom (prirodno zadanom) (Vusić 2013).

Slika 7. Drvna sječka
(www.pecinabiomasu.com)

Slika 8. Iverač u radu
(www.wikipedia.org)

Vlažnom drvnom sječkom, te sječkom koja sadrži visoke udjele zelenog drva i kore te drva koje dolazi direktno iz šume mogu se opskrbljivati postrojenja kapaciteta većeg od 1 MW, dok se kod malih postrojenja udio vode u drvu mora smanjiti na vrijednost manju od 30 %, inače dolazi do mogućnosti zagušenja sustava i stvaranja čađe, te se zbog toga drvna sječka za manja postrojenja mora uskladištit i prosušiti (Loibnegger 2011).

Drveni sječci koristi za proizvodnju energije u velikim industrijskim sustavima grijanja (tvornice, stambene zgrade) te za proizvodnju električne energije, a prednost njezina korištenja dolazi do izražaja kod specijaliziranih izrađenih kotlova (velika postrojenja) gdje se može koristiti i s većim udjelom vode. Izradom drvene sječke omogućeno je veće iskorištenje i potpunija upotreba drvene biomase koja zbog svojih značajki nije prikladna za proizvodnju »tradicionalnih« drvnih sortimenata i inače ostaje neiskorištena u šumi. Sustavi grijanja male i srednje snage moraju isključivo koristiti
prosušenu, visokokvalitetnu drvnu sječku, dok se u velikim toplanama na biomasu može koristiti i sječka slabije kvalitete (Loibnegger 2011).

Drvena sječka dobre kvalitete (u odnosu na drvnu sječku loše kvalitete) daje visoku ogrjevnju vrijednost kroz propisno prosušivanje što rezultira manjom potrošnjom goriva, većom učinkovitošću sustava, učinkovitošću rukovanja, boljom regulacijom sustava i čišćim sagorijevanjem (Loibnegger 2011).

Proizvodnja drvne sječke

Sustav za proizvodnju drvne sječke čini niz različitih koraka, uključujući obradu, transport i donošenje odluka, s ciljem pretvorbe šumske biomase u gorivo te osiguravanje transporta tog energenta iz šume do energane. Prema Stampferu i Kanzianu (2006) u Austriji, drvna se sječka može proizvoditi od šumskog ostatka i drva za energiju (Slika 9.)

![Diagram proizvodnje drvne sječke](image)

Slika 9. Sustavi pridobivanja šumske biomase u Austriji prema porijeklu, mjestu iveranja i vrsti prevezene biomase (Stampfer i Kanzian 2006)

S obzirom na značajke staništa, posebice nagib terena u šumskim sastojinama, navedeni sustavi bili bi primjenjivi i u Bosni i Hercegovini.

Sustavi za proizvodnju drvne sječke se obično organiziraju prema operaciji iveranja. Mjesto iveranja određuje vrstu šumske biomase za daljinski transport, te da li će ili ne ostali strojevi moći raditi neovisno o samom iveraču. Mjesto iveranja može biti u šumi,
na šumskoj cesti, pomoćnom stovarištu ili kod energane. Biomasa može biti transportirana u obliku šumskog ostatka, obloga drva, sabijenih svežnjeva i u obliku drvne sječke. Konačna gustoća tovara i udaljenost transporta određuju uspjeh cijelog sustava (Stampfer i Kanzian 2006).

Osnovni sustavi pridobivanja drvne sječke

»Pridobivanje šumskog ostatka pri stablovnvoj metodi izrade«

Stablovna metoda izrade primjenom sustava žičare ili skidera odvija se na šumskoj cesti. Preostali šumski ostaci se izvoze kamionima koji su opremljeni bočnim čeličnim šticama na odgovarajuće mjesto gdje se mogu grupirati u velike hrpe. Sirovina se neposredno ivera u kamione za dvrunu sječku i prevozi do postrojenja (Slika 10.). Tako proizvedenu dvrunu sječku preporuča se sušiti na zraku tijekom ljetnih mjeseci. Prednost ovog sustava je u tome što su troškovi sječe i izrade povezani s konvencionalnim pridobivanjem i stoga su relativno niski za biomassu.

Slika 10. Korištenje šumskog ostatka nakon iznošenja stabala žičarom, skupljanje šumskog ostatka kamionima, neposredno iveranje u kamione za dvrunu sječku

»Pridobivanje šumskog ostatka pri sortimentoj metodi izrade«
Šumski ostaci dobiveni harvesterskom sjećom izvoze se forvarderom na šumsku cestu. Iverač većih dimenzija na kamionu, ivera drvni materijal neposredno u kamion za prijevoz drvene sječke do energane (Slika 11). Dok se drvni materijal nalazi u sastojini, dodatni trošak se javlja kod prijevoza na šumsku cestu. I ovaj sustav je ograničen na prometne terene.

Slika 11. Korištenje šumskog ostatka nakon potpuno mehaniziranoga pridobivanja drva sortimentnom metodom, neposredno iveranje u kamione za drvnu sječku

»Pridobivanje drva za energiju pri sortimentnoj metodi izrade«

Sav drvni materijal pridobiven u prorjedama pretvara se u drvnu sječku. Sječu i izradbu drva obavlja harvester (Slika 12.). Sortimenti kao i šumski ostatak izvoze se forvarderom na šumsku cestu. Nakon mjesec dana skladištenja drvni materijal se ivera koristeći iverač montiran na šumski traktor. Kamioni opremljeni sustavom za bočni istovar i kliznim kontejnerima neposredno se utovaruju i prevoze drvnu sječku do energane (Stampfer i Kanzian 2006).
Slika 12. Korištenje drva za energiju pri sortimentnoj metodi izrade u sustavu harvester – forvarder, neposredno iveranje u kamione s kontejnerom

»Pridobivanje drva za energiju pri stablovnoj metodi izrade«

Sjeću i privlačenje drva obavlja traktorska ekipa sa sječnom glavom koja obara stabla i polaže ih na šumsko tlo u grupama te se vrši utovar istih u prikolicu. Stabla se prevoze na šumsku cestu kako bi se osušila. Iveranje se vrši pomoću mobilnog ivača koji vrši neposredni utovar drvene sječke u kamione za drvenu sječku koji vrše transport do energane (Slika 13). Kod ove metode izrade pridobivanje stabala malih promjera također je moguće upotrebom žicare. Sjeća se obavlja motornim pilama, a izvlačenje stabala žicarom. Ovaj sustav u većini slučajeva nije ekonomski isplativ (Stampfer i Kanzian 2006).
Slika 13. Korištenje drva za energiju pri stablovnoj metodi izradbe pri radu traktorske ekipaže sa sječnom glavom, neposredno iveranje u kamione za drvnu sječku

Slika 14. Iverač na kamionu
Kakvoća drvne sječke

Svojstva klase A1 i A2 predstavljaju drvnu sječku iz prirodnih šuma i kemijski netretiranih ostataka drva. A1 razred kakvoće predstavlja gorivo s niskim udjelom pepela, bez ili s vrlo malo kore i niskim udjelom vode, dok klasa A2 sadrži blago povišen udio pepela i/ili vode. B1 razred kakvoće sadrži drvni materijal iz prirodnih šuma, zatim šuma kratkih ophodnji, vrtova i plantaža uključujući industrijsko kemijski netretirano drvo i ostatke. Drvena sječka B2 razreda kakvoće također sadrži drvo kemijski netretirano drvo i ostatke, drvni materijal iz prirodnih šuma i plantaža te drugo korišteno drvo.

Tablica 4. Razredi drvne sječke prema granulometrijskom sastavu prema EN ISO 17225-4

<table>
<thead>
<tr>
<th>Dimenzije (mm)</th>
<th>Glavna frakcija (min. 75 % masenog udjela)</th>
<th>Fina frakcija (< 3,15 mm), maseni udio (%)</th>
<th>Gruba frakcija, maseni udio (%)</th>
<th>Sve (mm)</th>
<th>Površina presjeka prevelikih čestica, cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>P16S</td>
<td>3,15 ≤ P ≤ 16 mm</td>
<td>≤ 12 %</td>
<td>≤ 6 % > 31,5</td>
<td>≤ 45 mm</td>
<td>Nije određen</td>
</tr>
<tr>
<td>P31S</td>
<td>3,15 ≤ P ≤ 31,5 mm</td>
<td>≤ 8 %</td>
<td>≤ 6 % > 45</td>
<td>≤ 150 mm</td>
<td>< 2</td>
</tr>
<tr>
<td>P45S</td>
<td>3,15 ≤ P ≤ 45 mm</td>
<td>≤ 8 %</td>
<td>≤ 10 % > 63</td>
<td>≤ 200 mm</td>
<td>< 5</td>
</tr>
</tbody>
</table>
2.2.4 Drvni briketi

Proizvodnja briketa (briketiranje)

Briketi se formiraju prešanjem usitnjениh čestica lignoceluloznog materijala bez vezivnog sredstva pod određenim uvjetima: visok tlak, povišena temperatura i optimalni sadržaj vode u sirovini. Uzdužni tlak klipa preše iznosi 210 bar-a (Herak 1987). Pri prešanju drvene sirovine volumen se višestruko smanjuje, pri čemu se postiže gustoća briketa 800–1200 kg/m³. Temperatura alata preše iznosi 90°C. Kompaktnost i zbijenost usitnjenih čestica u briketu osigurava se bez vezivnog sredstva.
termoplastičnim sljepljivanjem čestica drvene sirovine. Osim odgovarajuće granulacije (usištenjenosti) polazne sirovine (do 3 mm), pri prešanju biomase značajnu ulogu ima i sadržaj vode u sirovini. Optimalan sadržaj vode je oko 15 %. Sadržaj pepela poslije sagorijevanja energetskog briketa iznosi od 1 % do 9 %, sumpora ima u trago vima, a ogrjevna vrijednost briketirane sirovine je 16 do 18,5 MJ/kg. Promjer briketa može biti od 25 do 90 mm, a duljina promjenjiva. Briketi se obično pakiraju u termoskupljujuću foliju, kartonske kutije, papirne ili plastične vreće. Tehnološki postupak briketiranja usitnjene lignocelulozne sirovine zasniva se na visokom tlaku u alatu preše 150 do 200 bar-a, koji biomassu pretvara u brikete kompaktnie forme velike gustoće (Zubac 1996). Uslijed djelovanja visokog tlaka na biomassu nastaje trenje čestica materijala, što izaziva povišenu temperaturu materijala 70 do 90°C. Briketiranjem se volumen biomase smanjuje 7 do 12 puta i dobiva se gustoća briketa 1,0 do 1,4 kg/dm³. Briketi se pakiraju u kartonske kutije po 10 kg, natron i PVC vreće od 25 – 40 kg ili u termoskupljujuću plastičnu foliju. Pakiranje briketa je neophodno zbog izrazite higroskopnosti sabijene sirovine (Brkić 2007).

Slika 15. Briketi (www.ogrjev.hr)

Kakvoća briketa

Prema normi EN ISO 17225-3: Solid biofuels — Fuel specifications and classes — Part 3: Graded wood briquettes, drvni briketi predstavljaju zgusnuto biogorivo izrađeno s aditivima ili bez njih, prizmatičnog, kockastog ili cilindričnog oblika s promjerom većim od 25 mm. Proizvode se prešanjem samljevene biomase. Svrstavaju se u tri razreda kakvoće: A1, A2 i B.

Svojstva klasa A1 i A2 predstavljaju drvne brikete iz prirodnih šuma i kemijski netretiranih ostataka drva. A1 razred kakvoće predstavlja gorivo s niskim udjelom pepela i dušika, dok klasa A2 sadrži blago povišen udio pepela i dušika. B razred kakvoće sadrži kemijski tretirano industrijsko drvo i ostatke te korišteno drvo. Kemijski
tretirani drvni ostaci nakon primarne obrade drva i korišteno drvo spadaju u B razred kakvoće sve dok ne sadržavaju teške metale i halogene organske spojeve koji su rezultat različitih tretmana drva.

U tablici 6. prikazan je pregled određenih kriterija za ocjenjivanje kakvoće drvnih briketa prema normi EN ISO 17225–3 koja definira kategorije i specifikacije za drvene brikete zajedno s pripadajućim svojstvima.

Tablica 6. Kriteriji za ocjenjivanje kakvoće drvnih briketa

<table>
<thead>
<tr>
<th>Parametar</th>
<th>Oznaka</th>
<th>A1</th>
<th>A2</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promjer, duljina, širina, visina</td>
<td>mm</td>
<td>Navesti vrijednost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udio vode</td>
<td>M, %</td>
<td>M12 ≤ 12</td>
<td>M15 ≤ 15</td>
<td>M15 ≤ 15</td>
</tr>
<tr>
<td>Udio pepela</td>
<td>A, %</td>
<td>A1.0 ≤ 1.0</td>
<td>A1.5 ≤ 1.5</td>
<td>A3.0 ≤ 3.0</td>
</tr>
<tr>
<td>Ogrjevna vrijednost</td>
<td>Q, MJ/kg</td>
<td>Q15.5 ≥ 15.5</td>
<td>Q15.3 ≥ 15.3</td>
<td>Q14.9 ≥ 14.9</td>
</tr>
<tr>
<td>Gustoća</td>
<td>DE, g/cm³</td>
<td>DE1.0 ≥ 1.0</td>
<td>DE1.0 ≥ 1.0</td>
<td>DE0.9 ≥ 0.9</td>
</tr>
<tr>
<td>Sadržaj dušika</td>
<td>N, %</td>
<td>N0.3 ≤ 0.3</td>
<td>N0.5 ≤ 0.5</td>
<td>N1.0 ≤ 1.0</td>
</tr>
<tr>
<td>Sadržaj sumpora</td>
<td>S, %</td>
<td>S0.03 ≤ 0.03</td>
<td>S0.04 ≤ 0.04</td>
<td></td>
</tr>
<tr>
<td>Sadržaj klora</td>
<td>Cl, %</td>
<td>Cl0.02 ≤ 0.02</td>
<td>Cl0.03 ≤ 0.03</td>
<td></td>
</tr>
</tbody>
</table>

2.2.5 Drvni peleti

Peleti (eng. wood pellets, njem. Holzpellets) predstavljaju najpovoljniji uporabni oblik drvne biomase. To su geometrijski pravilni komadići prešane usitnjene drvne sirovine valjkastog oblika (Šafran 2015). Peleti su cilindričnog oblika s promjerom 5–6 mm i duljinom 10–25 mm. Usitnjavanjem drva i njegovim prešanjem u pelete stvoreno je gorivo koje je dosegnulo razinu automatizirane uporabe kao i fosilna goriva, a time i svu lagodnost koju pri korištenju osiguravaju tekuća i plinovita goriva (Risović i dr. 2008). Peleti su biogorivo koje se koristi za grijanje najrazličitijih prostora. Energetska vrijednost peleta je oko 18 MJ/kg peleta (5 kWh/kg). Prosječna gustoća čestica peleta kreće se u rasponu 1000 – 1400 kg/m³ dok je nasipna gustoća peleta do 700 kg/m³ (Stelte 2011). Glavne prednosti peleta su visoka nasipna i energijska gustoća što rezultira manjim skladniškim prostorom, manjim transportnim troškovima, visokom energijskom učinkovitošću i većom strukturnom homogenošću. Uz to, smanjen sadržaj vode (8–10 %) povećava mogućnost dugotrajnog skладištenja (Holm 2006). Peleti se zbog svoje veličine mogu transportirati pumpama, kao i tekuća goriva, k tome omogućuju potpunu kontrolu izgaranja, čime je smanjena emisija čestica pepela i čađe u okolinu (Li i Liu, 2000; Sokhansanj i dr. 2003). Količina prašine koja nastaje pri transportu i manipulaciji minimalna je pa je i rizik od zapaljenja neznatan (Porter i dr. 2008). Zbog svoje kompaktnosti i ujednačenosti korisniku omogućavaju sigurno korištenje i nesmetan rad doznog mehanizma i peći.

Proizvodnja drvnih peleta počela je u Europi i SAD-u za vrijeme naftne krize 70-ih. Peleti su pružili jeftinu i kvalitetnu zamjenu lož ulja za vrijeme trajanja krize.
Popularnost su stekli ponovo 90-tih kada su zemlje počele poticati upotrebu obnovljivih izvora energije (www.peletgrupa.hr).

Proizvodnja peleta

Peletiranje je moguće opisati kao metodu povećanja gustoće biomase mehaničkim tlakom (Šafran 2015). Peletiranje (prešanje) različitih materijala našlo je primjenu u mnogim gospodarskim djelatnostima počevši od farmaceutske industrije, proizvodnje stočne hrane, a u posljednje vrijeme značajno mjesto zauzima u proizvodnji energijskih gorivih peleta (Stelte 2011). Prešanje biomase u brikete i pelete postupak je poznat više od 130 godina, budući da je William Harold Smith 1880. patentirao postupak proizvodnje »poboljšanog goriva iz piljevine« koji prema opisanom postupku odgovara današnjem briketu. Radi povećanja gustoće biomase, ona se preša u pelete, koristeći mehanički proces u kojem se narušava njezina stanična struktura (Stelte 2011).

Slika 16. Drvni peleti (www.siska.hr)

S obzirom na medij koji se koristi kod sušenja, sušionice dijelimo na sušionice s dimnim plinovima, zrakom i pregrijanom parom (Šafran 2015). Sušionice dimnim plinovima imaju dvostruku ulogu: dovode toplinu za sušenje te odvode vlagu nastalu procesom...
sušenja. Prednost sušionica pregrijanom parom u odnosu na sušionice dimnim plinovima očituje se u nemogućnosti oksidacije i izgaranja sirovine te znatno većoj brzini sušenja (Mujumdar 1995).

Nakon sušenja, drvnu sječku je potrebno usitniti na mlinu čekićaru ili mlinu s noževima. Prema Ciolkosz (2009) optimalan promjer čestica za proizvodnju peleta je oko 4 mm, te ako promjer komada premašuje 5 mm prije peletiranja potrebno je ponovno usitnjavanje.

Kondicioniranje predstavlja proces koji uključuje dodavanje pare ili vode neposredno prije peletiranja. Svrha kondicioniranja je smanjenje trenja među česticama drva, ali i između sirovine i stijenke čelične matrice u fazi prešanja, stvaranjem sloja vode na površini čestica drva (Šafran 2015).

Peletiranje se provodi na prešama gdje se pod povišenom temperaturom i tlakom kroz matricu istiskuju peleti cilindričnog oblika, standardno 6-8 mm, ne duži od 38 mm, ovisno o izlaznoj rešetci koja se po potrebi može zamijeniti. Vezivo za peletiranje drvene biomase je lignin, koji je prirodno sadržan u drvu, no u nekim slučajevima potrebno je dodavati vezivo (Ciolkosz 2009).

Duljina peleta propisana je normom. Formirani i zagrijani pelet izlazi iz preše, prelazi preko sita otvora 3,15 mm pri čemu se prosijava, hladni te skladišti ili pakira (Šafran 2015).

Slika 17. Prikaz procesa proizvodnje drvnih peleta (www.german-pellets.de)

Kakvoća peleta

Ujednačena veličina i kakvoća peleta predvjeti su za razvoj tržišta. Ono je regulirano normama kojima se propisuju svojstva gorivih peleta. Pojedine zemlje Europske unije donijele su vlastite norme za kakvoću, skladištenje, transport te izgaranje peleta i
ostale čvrste biomase (Njemačka – DIN 51731 i DIN plus; Austrija – ÖNORM M 7135; Italija – CTI-R04/05; Švedska – SS 187120; Francuska – ITEBE) (Šafran 2015).

Program ENplus certifikacije obuhvaća tri klase kvalitete peleta s različitim zahtjevima o korištenoj sirovini, kao i karakteristikama drvnih peleta. Odgovaraju klasama norme EN ISO 17225-2 i nazvane su:

- ENplus-A1
- ENplus-A2
- EN-B

Kakvoća peleta ovisi o kemijskim, mehaničkim i fizikalnim svojstvima. Neka od svojstava direktno ovise o vrsti i sastavu korištene sirovine dok su druga vezana uz tehnološki postupak proizvodnje (prešanja) peleta. Peleti svojom kvalitetom u prvom redu moraju zadovoljiti zahtjeve potrošača, ali i standarde koje propisuje tržište i zakonodavac (Šafran 2015).

Detaljniji pregled kriterija za ocjenjivanje kakvoće peleta nalazi se u tablici 7.

2.3 Normizacija i certifikacija čvrstih biogoriva

Normizacija je djelatnost uspostavljanja odredaba za opću i opetovanu uporabu koje se odnose na postojeće ili moguće probleme radi postizanja najboljeg stupnja uređenosti u danome kontekstu. Ta se djelatnost u prvome redu sastoji od oblikovanja, izdavanja i primjene norma. Važne su koristi od normizacije poboljšavanje prikladnosti proizvoda, procesa i usluga za njihove predviđene svrhe, otklanjanje zapreka u trgovini te olakšavanje tehničke suradnje.

Ciljevi su normizacije osiguranje prikladnosti kojega proizvoda, procesa ili usluge da u određenim uvjetima služi svojoj namjeni, ograničavanje raznolikosti izborom optimalnoga broja tipova ili veličina, osiguravanje spojivosti različitih proizvoda, zaštita zdravlja, sigurnost, zaštita okoliša itd.

Certificiranje je postupak u kojem neovisna organizacija na temelju provedenog ocjenjivanja sukladnosti, utvrđuje zadovoljava li proizvod, proces, sustav upravljanja ili osoba kriterije sadržane u određenom normativnom dokumentu. Certifikacijsko tijelo koje provodi certifikaciju ocjenjuje dokumentaciju i rad u praksi organizacije koja se želi certificirati prema određenim normativnim dokumentima. Na temelju provedenog ocjenjivanja sukladnosti certifikacijsko tijelo dodjeljuje certifikat podnositeljima zahtjeva za certifikaciju, ako su ispunjeni svi uvjeti prema propisanim normativnim dokumentima.

2.3.1 Normizacija čvrstih biogoriva

CEN (Comité Européen de Normalisation) – Europski odbor za normizaciju

Europski odbor za normizaciju usvaja norme i ostale tehničke specifikacije koje su primjenjive za područje Europe. CEN radi sukladno direktivi 98/34/EC »laying down a procedure for the provision of information in the field of technical standards and regulations and of rules on Information Society services« i novoj Uredbi (EU) broj 1025/2012. U rad CEN-a uključeni su predstavnici iz 33 zemlje koji pomažu u razvoju europskih norma koje se označavaju slovima EN.

Norme koje usvoji CEN postaju automatski i nacionalne norme u zemljama članicama Europskog odbora za normizaciju. Na taj način je olakšano trgovanje unutar prostora Europe jer se proizvod koji je ispitao u jednoj zemlji i dokazan da radi sukladno određenoj EN normi može prodavati u svim zemljama Europe. U rad CEN-a uključeno je oko 60.000 stručnjaka iz država europskog prostora.

Prijedlog za potrebama izrade europske norme može doći od bilo koje zainteresirane strane. Prijedloge najčešće daju europska nacionalna normizacijska tijela, Europska komisija i EFTA - European Free Trade Association. Nakon pristizanja prijedloga CEN-ovi tehnički odbori (TC) odlučuju hoće li se prihvatiti ili odbaciti pristigli prijedlog. Kada se prijedlog prihvati osniva se radna skupina u kojoj će sudjelovati sve zainteresirane strane koje će raditi na usvajanju nove norme. Nakon izrađivanja skice, prijedlog se dostavlja na javno mišljenje i nakon toga su moguće pojedine izmjene. Kada se postigne dogovor norma se prihvaća kao europska i dobiva oznaku EN.

ISO (International Organization for Standardization) - Međunarodna organizacija za normizaciju

Postoje tri kategorije članstva u ISO-u. Prva kategorija su nacionalna tijela koja su najvažnija za donošenje norma u svakoj zemlji članici. Oni su jedini članovi ISO-a koji imaju pravo glasa. Zemlje koje nemaju nacionalna normizacijska tijela spadaju u kategoriju dopisnih članova. U ovoj kategoriji članovi se obavještavaju o radu ISO-a,
ali nemaju pravo sudjelovanja u ISO-u. I na kraju postoje članovi pretplatnici za zemlje sa slabije razvijenim gospodarstvom. Ovi članovi plaćaju manje članarine, ali i dalje mogu pratiti razvoje novih normi.

Norme se usvajaju na tehničkim odborima. Predstavnici svih zainteresiranih strana mogu sudjelovati u radu tehničkih odbora. Svaka ISO norma koja se pojavi u prodaji napravljena je i usuglašena na tehničkom odboru koji je zadužen za donošenje takvih vrsta norma. Objava norme kao međunarodne norme zahtijeva odobrenje minimalno 75 % glasova tijela članica.

Norme za čvrsta biogoriva prihvaćene od Tehničkog odbora TC 335 mogu se podijeliti u nekoliko skupina:

- **Terminology, definitions and descriptions** – EN ISO 16559
- **Fuel specifications and classes** – EN ISO 17225-1 EN ISO 17225-6
- **Sampling** – EN 14778
- **Sample preparation** – EN 14780
- **Physical and mechanical properties** – EN 15210, EN 15149, EN 15103...
- **Determination of calorific value** – EN 14918
- **Fuel quality assurance** – EN 15234.

Cilj međunarodnih normi u sustavu certifikacije čvrstih biogoriva jest pružiti nedvosmislene i jasne principe klasifikacije za čvrsta biogoriva i poslužiti kao alat kako bi se omogućilo učinkovito trgovanje biogorivima te omogućilo dobro razumijevanje između prodavatelja i kupca, kao i alat za komunikaciju s proizvođačima opreme.

Slika 18. opisuje korištenje i pretvorbu bioenergije iz izvora biomase u bioenergiju do konačne pretvorbe u bioenergiju. Iako se biomasa može koristiti za proizvodnju energije, ona ima i druge primarne namjene poput sirovine za gradnju, namještaj, pakiranje, papirne proizvode i drugo.

![Slika 18. Pretvorba biomase u bioenergiju](image-url)

2.3.2 Certifikacija čvrstih biogoriva

Prema Direktivi o promicanju uporabe energije iz obnovljivih izvora EU je do 2020. godine obvezna najmanje 20 % svoje krajnje potrošnje energije pokriti energijom iz obnovljivih izvora. Nadalje, Direktivom je propisano da »svaka država članica osigurava da udio energije iz obnovljivih izvora u svim oblicima prometa 2020. iznosi barem 10 % ukupne potrošnje energije u prometu u toj državi članici«. S obzirom na trenutačno stanje u pogledu tehnoloških napredaka i mogućnosti uporabe alternativnih oblika energije u prometu, 10 %-tna ciljna vrijednost u praksi može se postići samo znatnom uporabom biogoriva (Članak 3. stavak 4. Direktive o promicanju uporabe energije iz obnovljivih izvora).

Kako bi se zajamčilo da su biogoriva koja se stavlja na tržište EU-a održiva, Direktivom je propisan niz kriterija održivosti koje moraju ispunjavati gospodarski subjekti. Nadalje, države članice za računanje postizanja 10 %-tne ciljne vrijednosti za promet smiju uzimati u obzir samo ona biogoriva koja su certificirana kao održiva. Održivost većine biogoriva koja su stavljena na tržište EU-a certificira se u okviru dobrovoljnih programa koje priznaje Komisija (Sustav EU-a za certifikaciju održivih biogoriva 2016).

Certifikacija peleta ENplus kvalitete predstavlja veliki korak prema upotrebi peleta kao masovno korištenog energenta. Po prvi puta, brojni nacionalni standardi i certifikati, zamjenjuju se jednim jedinstvenim sustavom certificiranja baziranim na EN 14961-2 standardu za drvni pelet. Ovaj sustav je definiran od strane Europskog vijeća za pelete (European Pellet Council) i time uživa potporu velikog dijela europskog sektora peleta.

Cilj certifikacijskog sustava ENplus za pelete jest osigurati opskrbu peleta za grijanje i kogeneracijska postrojenja (CHP - combined heat and power plant) do 1 MW izlazne snage u stambenim, poslovnim i javnim zgradama s jasno definiranom i stalnom kvalitetom. Kako bi se zajamčila konstanta razina kvalitete isporučenih peleta, proizvodnja, logistika te postupci isporuke se kontroliraju. Kao rezultat toga, aspekti certifikata proizvoda su usklađeni s certifikatom sustava.

Sustav certificiranja sadrži sljedeće bitne točke:

1. zahtjevi za proizvodnju peleta i osiguranja kvalitete,
2. zahtjevi za proizvod (EN ISO 17225-2),
3. zahtjevi za označavanje, logistiku i privremeno skladištenje te
4. zahtjevi za isporuku krajnjim kupcima.

S klasama ENplus-A1, ENplus-A2 kao i klasom EN-B definirane su tri razine kvalitete peleta koje su utemeljene na značajkama europske norme EN-14961-2.
Vlasništvo ENplus znaka ima Europsko udruženje za biomasu - AEBIOM (koji su pokrovitelji europskog vijeća za pelete - EPC). AEBIOM dodjeljuje nacionalnim udrugama peleta koji su prihvaćeni kao nacionalni Davatelji licence pravo na izdavanje ENplus certifikata kvalificiranim tvrtkama.

U zemljama u kojima ne postoje davatelji ENplus licence na nacionalnoj razini, tvrtke mogu izabrati ovlašteno certifikacijsko tijelo diljem svijeta.

Davatelji licence na nacionalnoj razini su udruge koje zastupaju interese sektora peleta u svojim zemljama te imaju potpisan ugovor s AEBIOM-om koji im omogućuje izdavanje ENplus licence kvalificiranim poduzećima.

Osnovne komponente programa certificiranja su:

1. Definiranje klasa kvaliteta i specifikacija svojstava peleta,
2. Specifikacije za upravljanje kvalitetom »in-house« (oprema i postupci, kvalifikacije zaposlenika, unutarnja kontrola kvalitete),
3. Pregled i potvrda usklađenosti drvnih peleta, proizvodnje peleta, logističkog sustava (do maloprodaje) i upravljanja kvalitetom s europskim standardima i odredbama ENplus priručnika,
4. Izvršenje certificiranja i vanjske kontrole, licenciranja i oduzimanja licence, rukovanja i reklamacije i
5. Označavanje i korištenje ENplus oznake.

Izdavatelj licence

Potvrda treće strane

EPC ili Nacionalni davatelj licence ovlašćuje jedno ili više certifikacijskih tijela za provedbu procesa certifikacije. Sporazum između EPC-a ili Nacionalnog davatelja licence i odabranog certifikacijskog tijela mora biti potpisan s obje strane. Ako je licenca izdana prije nego je Nacionalni davatelj licence ostvario prava na ENplus licencu ili prije izbora ekskluzivnog certifikacijskog tijela, ugovor između certificirane tvrtke i prethodnog certifikacijskog tijela biti će prihvaćen od strane Nacionalnog davatelja licence do datuma isteka. Obnovu certifikata izdaje ovlašteno certifikacijsko tijelo.

Grupna certifikacija

Nacionalni davatelj licence može odabrati model grupne certifikacije gdje djeluje kao organizacija za sustavnu podršku. Nacionalni davatelj licence mora izabrati akreditirano certifikacijsko tijelo za ocjenu sukladnosti nacionalne ENplus provedbe prema normi ISO 9001 i ENplus priručniku. Organizacija za sustavnu podršku ocjenjuje sukladnost proizvođača ili trgovca peleta s odredbama ENplus priručnika na temelju ENplus zahtjeva i izvješća inspekcije za nadzor iz navedenog inspekcijskog tijela.

Organizacija za sustavnu podršku

Organizacija za sustavnu podršku je Nacionalni davatelj licence koji odlučuje organizirati nacionalnu ENplus certifikaciju kao grupnu certifikaciju.

Certifikacijska tijela

Valjanost certifikata

Inspekcije i kontrolna tijela

ENplus oznaka

ENplus identifikacijski broj je jedinstvena oznaka vezana za određenog certificiranog proizvođača ili trgovca peletima. Sastoji se od 5 znamenki počevši s brojem zemlje, a završava s troznamenkastim brojem dodijeljenim od strane EPC-a.

Peleti za neindustrijsku uporabu

Drvni peleti za neindustrijsku upotrebu predstavljaju zgusnuto biogorivo proizvedeno od drvne biomase sa ili bez aditiva obično cilindričnog oblika, prosječna duljina obično iznosi 5 do 40 mm s promjerom do 25 mm i odlomljenim krajevima. Sirovina za drvne pelete je drvena biomasa. Peleti su obično proizvedeni u kalupu, s ukupnim sadržajem vode obično manje od 10 % svoje mase na mokroj bazi.

Pod aditivima kod peleta za neindustrijsku uporabu podrazumijeva se materijal koji je namjerno dodan u proizvodnom procesu, bilo zbog učinkovitije proizvodnje, poboljšanja kvalitete goriva ili smanjenja određenih emisija. Mast i druga maziva koja se koriste za održavanje strojeva i koja se možda pronađu u peletu, ne smatraju se aditivima. Pod kemijskom obradom ovih peleta smatra se bilo koji tretman izuzev zrakom, vodom ili toplinom.

ISO 17225 podržava upotrebu drvnih peleta za stambene, male poslovne i javne zgrade, kao i za pogone za proizvodnju električne energije koji zahtijevaju određenu kvalitetu peleta. Stambene, male poslovne i javne zgrade zahtijevaju veću kvalitetu goriva iz sljedećih razloga:

- Sustavi malih razmjera obično nema napredne kontrole za praćenje dimnih plinova i za čišćenje.
- Aparatima općenito ne rukuju profesionalni inženjeri
- Takvi sustavi se često nalaze u stambenim i naseljenim četvrtima.

ISO 17225 utvrđuje klase kvaliteta goriva i specifikacije drvnih peleta za neindustrijsku i industrijsku uporabu. ISO 17225 pokriva samo drvne pelete proizvedene od sljedećih sirovina:

- Šume, nasadi i drugo netaknuto drvo;
- Nusproizvodi i ostaci od industrije obrade drva;
- Korišteno drvo.
Termički obrađeni peleti (npr. torificirani peleti) nisu uključeni u opseg ovog dijela ISO 17225. Torifikacija je blagi predtretman biomase na temperaturi između 200 °C i 300 °C.

Tablica 7. Kriteriji za ocjenjivanje kakvoće peleta za »neindustrijsku« uporabu prema ENplus

<table>
<thead>
<tr>
<th>Parametar</th>
<th>A1</th>
<th>A2</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promjer, mm</td>
<td>6 ili 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duljina, mm</td>
<td>3,15 ≤ L ≤ 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udio vode, %</td>
<td>≤ 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udio pepela, %</td>
<td>≤ 0,7</td>
<td>≤ 1,5</td>
<td>≤ 3,0</td>
</tr>
<tr>
<td>Mehanička otpornost, %</td>
<td>≥ 97,5</td>
<td>≥ 96,5</td>
<td></td>
</tr>
<tr>
<td>Količina finih čestica,%</td>
<td>≤ 1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ogrjevna vrijednost, MJ/kg</td>
<td>16,5 ≤ Q ≤ 19</td>
<td>16,3 ≤ Q ≤ 19</td>
<td>16,0 ≤ Q ≤ 19</td>
</tr>
<tr>
<td>Nasipna gustoća, kg/m³</td>
<td>≥ 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadržaj dušika, %</td>
<td>≤ 0,3</td>
<td>≤ 0,5</td>
<td>≤ 1,0</td>
</tr>
<tr>
<td>Sadržaj sumpora, %</td>
<td>≤ 0,03</td>
<td>≤ 0,04</td>
<td></td>
</tr>
<tr>
<td>Sadržaj klora, %</td>
<td>≤ 0,02</td>
<td>≤ 0,03</td>
<td></td>
</tr>
<tr>
<td>Temp. taljenja pepela, °C</td>
<td>Informativno se može navesti</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Materijal i metode istraživanja

3.1 Materijal

3.1.1 Županija Središnja Bosna

Geografski položaj i prirodne značajke

Županija Središnja Bosna zauzima površinu od 3.189 km² i jedna je od 10 administrativnih jedinica u sastavu Federacije Bosne i Hercegovine (slika 20). U usporedbi s drugim Županijama u Federaciji, Županija se po površini nalazi na petom mjestu i u svom sastavu ima 12 općina: Bugojno, Busovača, Dobretići, Donji Vakuf, Fojnica, Gornji Vakuf – Uskoplje, Jajce, Kiseljak, Kreševo, Novi Travnik, Travnik i Vitez (slika 21). Nalazi se u središnjem dijelu Bosne i Hercegovine i graniči sa Zeničko-dobojskom županijom, Sarajevskom županijom, Hercegovačko-neretvanskom županijom i Županijom broj 10, te sa entitetom Republika Srpska. Županija je izrazito brdsko-planinsko područje sačinjeno od: dolinsko-kotlinskih dijelova Lašve, Vrbasa i Fojnice te planinskih dijelova s nadmorskom visinom i do 2.110 m.
Promatrajući veličinu i broj stanovnika općina koje su u sastavu Županije, najveći udio u površini ima općina Travnik, dok je površinom najmanja općina Dobretići. Kada je riječ o broju stanovnika, općina Travnik se ponovo nalazi na prvom mjestu u Županiji, a slijede Bugojno, Jajce, Vitez, Novi Travnik, itd.

Tablica 8. Iskaz površina po općinama

<table>
<thead>
<tr>
<th>Općina</th>
<th>Ukupna površina (u ha)</th>
<th>Površina poljoprivrednog zemljišta</th>
<th>Površina šuma (u ha)</th>
<th>Ostalo (u ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ukupno</td>
<td>Oranice</td>
<td>Voćnjaci</td>
<td>Livade i pašnjaci</td>
</tr>
<tr>
<td>Busovača</td>
<td>14.760</td>
<td>4.257</td>
<td>1.937</td>
<td>584</td>
</tr>
<tr>
<td>Dobretići</td>
<td>3.850</td>
<td>3.000</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Donji Vakuf</td>
<td>34.755</td>
<td>11.086</td>
<td>5.706</td>
<td>420</td>
</tr>
<tr>
<td>Fojnica</td>
<td>30.800</td>
<td>5.421</td>
<td>1.897</td>
<td>138</td>
</tr>
<tr>
<td>Jajce</td>
<td>38.234</td>
<td>17.256</td>
<td>7.230</td>
<td>305</td>
</tr>
<tr>
<td>Kiseljak</td>
<td>16.490</td>
<td>7.822</td>
<td>5.734</td>
<td>305</td>
</tr>
<tr>
<td>Kreševo</td>
<td>14.924</td>
<td>3.590</td>
<td>2.229</td>
<td>102</td>
</tr>
<tr>
<td>Novi Travnik</td>
<td>24.247</td>
<td>6.328</td>
<td>3.212</td>
<td>312</td>
</tr>
<tr>
<td>Travnik</td>
<td>56.300</td>
<td>22.970</td>
<td>8.227</td>
<td>957</td>
</tr>
<tr>
<td>Vitez</td>
<td>15.852</td>
<td>4.816</td>
<td>3.014</td>
<td>398</td>
</tr>
<tr>
<td>Ukupno</td>
<td>326.505</td>
<td>116.083</td>
<td>51.652</td>
<td>4.219</td>
</tr>
</tbody>
</table>

Izvor: Prostorni plan Županije Središnja Bosna (2005.), »Službene novine Županije Središnja Bosna«, broj 11/05.

Ukupna površina pod šumama u odnosu na 2005. godinu kada je iznosila 195 782 ha se povećala i sada iznosi 211 196 ha.
Tablica 9. Broj stanovnika u Županiji Središnja Bosna

<table>
<thead>
<tr>
<th>Općina</th>
<th>Broj stanovnika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bugojno</td>
<td>31 470</td>
</tr>
<tr>
<td>Busovača</td>
<td>17 910</td>
</tr>
<tr>
<td>Dobretići</td>
<td>1629</td>
</tr>
<tr>
<td>Donji Vakuf</td>
<td>13 985</td>
</tr>
<tr>
<td>Fojnica</td>
<td>12 356</td>
</tr>
<tr>
<td>Gornji Vakuf-Uskoplje</td>
<td>20 933</td>
</tr>
<tr>
<td>Jaje</td>
<td>27 258</td>
</tr>
<tr>
<td>Kiseljak</td>
<td>20 772</td>
</tr>
<tr>
<td>Kreševo</td>
<td>5273</td>
</tr>
<tr>
<td>Novi Travnik</td>
<td>23 832</td>
</tr>
<tr>
<td>Travnik</td>
<td>53 482</td>
</tr>
<tr>
<td>Vitez</td>
<td>25 836</td>
</tr>
<tr>
<td>Ukupno</td>
<td>254 736</td>
</tr>
</tbody>
</table>

Izvor: Agencija za statistiku BiH, Popis stanovništva 2013. godine

Na prostoru Županije se nalaze značajne rezerve ugljena raspoređene u tri bazena (Bugojanski, Jajački i Sarajevsko-zenički), zatim ležišta crnih metala i značajna nalazišta nemetala, nalazišta različitih obojenih metala od kojih najveći značaj ima rudna boksita, zatim cinka, olova, srebra, žive i zlata. Osim toga zastupljene su i druge industrijske mineralne sirovine kao što su rude aluminija – boksit, rude željeza – magnetit, hematit i limonit, rude gipsa, rude kvarcita, žive, bakra, olova i cinka te građevinski materijali kao što su tehnički i arhitektonsko-građevinski kamen u koji spadaju dolomit, krečnjak, kvarc-diorit, riolit, mramor, tufo i sedra, kao i glina. Prirodne karakteristike tla u Županiji definiraju ovaj resurs kao izrazito osjetljiv, što zahtijeva odgovorno upravljanje njime. Činjenice da 84,2 % teritorije ima nagib veći od 13 %, da je 40 % zemljišta pliće od 30 cm, te da je 17 % zemljišta vrlo plitko tlo, ukazuju da se najveći dio teritorija može svrstati u kategoriju osjetljivih tala koja zahtijevaju dodatnu brigu i posebne načine upravljanja te primjenu posebnih proizvodnih praksi.

Industrijsku proizvodnju u Županiji je u 2013. godini obavljalo 708 gospodarskih društava te 711 obrtnika koji su zapošljavali približno 11.400 osoba. Učešće Županije u ukupnoj industrijskoj proizvodnji u Federaciji u posljednjih pet godina (2009. – 2013. godine) povećalo se, a u 2013. godini je iznosilo 7,5 %. Prema tome, Županija se nalazi na petom mjestu rang-liste Županija prema učešću u industrijskoj proizvodnji u Federaciji. Najznačajnije vrste djelatnosti zastupljenih u Županiji su: proizvodnja prehrambenih proizvoda i pića; proizvodnja tekstila; prerada drva i proizvodnja proizvoda od drva, osim namještaja; proizvodnja kemikalija i kemijskih proizvoda; proizvodnja baznih metala; proizvodnja metalnih proizvoda.

Proizvodnja električne energije u Županiji predstavlja važnu gospodarsku djelatnost. U razdoblju od 2009. do 2013. godine najveća ukupna proizvodnja električne energije u Županiji ostvarena je 2010. godine kada je ukupna proizvodnja iznosila 514,6 GWh. U 2011. godini ostvareno je značajno smanjenje ukupne proizvodnje električne energije...

3.1.2 Šumarstvo i drvna industrija

Šumarstvo

Upravljanje državnim šumama u nadležnosti je Vlade Županije, koja je u sastavu resornog ministarstva osnovala Županijsku upravu za šumarstvo, kojoj su u nadležnost povjereni upravni, stručni i drugi poslovi u vezi s kontrolom i stručnim nadzorom korištenja šuma i šumskog zemljista radi očuvanja i unapređenja trajnosti upravljanja šumama. Upravom rukovodi direktor, ista se sastoji od direkcije Uprave sa sjedištem u Travniku u kojoj su formirane dvije osnovne organizacijske jedinice – službe i to Služba za opće, pravne i ekonomske poslove i Služba za integralnu zaštitu šuma, praćenje realizacije šumskogospodarskih osnova i katastar, te tri dislocirane organizacijske jedinice - odsjek za zaštitu šuma u smislu čuvarske službe (u svakoj od općina Županije), sa sjedištim i mjesnom nadležnošću nad općinama Županije kako slijedi:

- Odjeljenje Bugojno, koje obuhvaća područja općina: Jajce, Gornji Vakuf-Uskoplje, Bugojno i Donji Vakuf, sa sjedištem u Donjem Vakufu;
- Odjeljenje Novi Travnik, koje obuhvaća područja općina: Dobretići, Travnik, Novi Travnik, Vitez i Busovača, sa sjedištem u Travniku;
- Odjeljenje Fojnica koje obuhvaća područja općina: Kiseljak, Fojnica i Kreševo, sa sjedištem u Fojnici.

Istovremeno sa osnivanjem Županijske uprave za šumarstvo, osnovano je i Županijsko šumskogospodarsko društvo kome su povjereni poslovi upravljanja državnim šumama na području Županije. Na području Županije državnim šumama gospodari županijsko poduzeće Šumskogospodarsko društvo »Šume Središnje Bosne« u okviru kojega su uspostavljena četiri šumskogospodarske područja, a to su »Lašvansko«, »Gornjevrbasko«, »Fojničko« i »Srednjevrbasko«. Također, kao operativna organizacijska razina osnovane su šumarije i to u svakoj općini po jedna.

Ukupna površina šumskog zemljišta u državnom vlasništvu za područje Županije iznosi 184 526 ha, od toga površine pogodne za gospodarenje zauzimaju 167 866 ha ili 91 % dok na minirane površine otpada 16 600 ha ili 9 %. Ukupna drvna zaliha iznosi 28 872 777 m3 s godišnjim prirastom od 695 286 m3. Površina privatnih šuma iznosi 26 670 ha sa drvnim zalihom od 4 404 620 m3. Ukupna površina šuma (državne + privatne) u Županiji iznosi 211 196 ha. Planirani godišnji etat za državne šume u 2015. godini iznosio je 567 127 m3 i realiziran je u iznosu od 400 304 m3, odnosno sa 71 %.

Šume predstavljaju jedan od značajnih prirodnih resursa Županije. Proizvodnja šumskih sortimenata u Županiji u razdoblju 2009.–2013. godine zasniva se na
proizvodnji trupaca četinjača, koji podrazumijevaju drvne sortimente odgovarajućih fizičkih i mehaničkih svojstava, namijenjenih za daljnju mehaničku preradu te na proizvodnju ogrjevnog drva listača koje podrazumijeva drvo namijenjeno za ogrjev ili proizvodnju drvnog ugljena. Proizvodnja tih dviju vrsta sortimenata u promatranom petogodišnjem razdoblju je imala prosječan udio od 65,7 % u ukupnoj proizvodnji šumskih sortimenata u Županiji. Bez obzira na veliko bogatstvo šumama, Županija još uvijek nije uspjela izgraditi veće kapacitete za obradu te sirovine i kreiranje polugotovih i gotovih proizvoda u ukupnom lancu vrijednosti. Prodaja šumskih sortimenata je također najvećim dijelom zasnovana na prodaji dviju spomenutih vrsta sortimenata. Proizvodnja trupaca listača u odnosu na proizvodnju ogrjevnog drva listača u Županiji je u odnosu 30 % : 70 % u korist proizvodnje ogrjevnog drva. Planirani obujam sječe na godišnjem nivou je oko 20 % manji od etatnih mogućnosti.

Drvna industrija

Drvna industrija u Županiji Središnja Bosna u nadležnosti je resornog Ministarstva gospodarstva. Na području Županije trenutno je registrirana 131 legalna pilana, a stanje po općinama je slijedeće: Travnik 25, Gornji Vakuf-Uskoplje 17, Bugojno 18, Vitez 13, Jajce 12, Novi Travnik 11, Donji Vakuf 9, Busovača 7, Kreševo 6, Fojnica 7, Kiseljak 3 i Dobretići 3 pilane. Postoje slučajevi da pojedine legalne pilane vrše otkup i primarnu preradu drvnog obujma koji potiče od bespravnih sjeća, te iste vrše i daljnju distribuciju preradenog drvnog obujma koji ima porijeklo od nelegalnih sjeća (Izvještaj o radu županijske uprave za šumarstvo 2015).

Instalirani kapaciteti za primarnu preradu drvnog obujma (legalni i nelegalni), objekata za proizvodnju drvnog ugljena (žežnice) i potrebe lokalnog (ruralnog i urbanog) stanovništva za ogrjevnim drvom su višestruko veći od planskih sjeća u šumama.

Prema neslužbenim podacima nadležne službe evidentirale su na području Županije 475 žžečnice koje su uglavnom podignute u nelegalnoj proceduri, a stanje po općinama je kako slijedi: Fojnica 293, Busovača 56, Gornji Vakuf-Uskoplje 54, Kreševo 32, Kiseljak 20, Bugojno 16, Vitez 2 i Travnik 2. Spomenute žžečnice za rad koriste drvo čije je porijeklo uglavnom od bespravnih sjeća bilo da vlasnici žžećica direktno provode bespravne sjeće ili nelegalni drvni obujam preuzimaju od drugih lica, počinitelja bespravnih sjeća (Izvještaj o radu županijske uprave za šumarstvo 2015).
Ukoliko se uradi samo osnovna analiza ukupnih kapaciteta legalnih postrojenja koja su instalirana za primarnu preradu drvnog obujma dolazimo do preliminarne podatke da trenutno na području Županije postoje instalirani kapaciteti koji imaju potrebu za drvnim obujmom u količini od cca. 800 000 m3. Ako izvršimo samo grubu usporedbu sa količinom drvnog obujma koji se korisnicima u legalnoj proceduri nudi od strane korisnika državnih šuma (oko 450 000 m3) tada možemo utvrditi da i pored drvnog obujma koji se u legalnoj proceduri isporučuje pilanama sa područja drugih Županija ili susjednog entiteta ipak postoji znatna neravnoteža u ponudi i potražnji tehničkog drva (Pružan i Konjalić 2011).

Trenutna proizvodnja peleta u Županiji Središnja Bosna se procjenjuje na približno 20 000 tona od čega se gotovo 80 % izvozi u zemlje Europske unije prvenstveno Austriju, Italiju i Sloveniju.

S obzirom na instalirane kapacitete drvne industrije u Županiji Središnja Bosna, pretpostavka je da će poduzetnici iz tog sektora još više prepoznati veliki izvoznii potencijal drvnih peleta na europskom tržištu te se u budućnosti okrenuti ka većem iskorištenju drvoindustrijskog ostatka i na taj način poboljšati svoje poslovanje i ojačati gospodarstvo lokalnih zajednica.

S obzirom na instalirane kapacitete drvne industrije u Županiji Središnja Bosna, pretpostavka je da će poduzetnici iz tog sektora još više prepoznati veliki izvoznii potencijal drvnih peleta na europskom tržištu te se u budućnosti okrenuti ka većem iskorištenju drvoindustrijskog ostatka i na taj način poboljšati svoje poslovanje i ojačati gospodarstvo lokalnih zajednica.

Od ostalih gospodarskih subjekata koji se bave preradom drva nisu evidentirani proizvođači drvnih peleta, kao ni industrijski pogoni za proizvodnju ogrjevnog drva.

3.2 Metode istraživanja

Istraživanje se temelji na analizi proizvedenih i potrebnih količina čvrstih biogoriva. Rezultati primarnog istraživanja tržišta ukazali su na potrebu detaljnijih laboratorijskih analiza drvnih peleta kao čvrstog biogoriva od kojeg se očekuje povećanje proizvodnje s obzirom na instalirane kapacitete drvnih industrije te povećanje potrošnje u kućanstvima kao zamjena za ogrjevno drvo.

Prikupljeno je ukupno pet uzoraka drvnih peleta od četiri različita proizvođača. Tri uzorka peleta potječu iz proizvodnih pogona s područja Županije Središnja Bosna dok su dva uzorka kupljena u trgovačkom centru s porijeklom iz Unsko-sanske Županije.
Za laboratorijsku analizu dostavljena su i dva uzorka piljevine i jedan uzorak drvene sječke iz proizvodnog pogona u Županiji Središnja Bosna.

Sirovinu za proizvodnju peleta čini uglavnom drvnoindustrijski ostatak nakon proizvodnje namještaja. U slučaju da se iskaže potreba za dodatnom sirovinom, nabavlja se višemetarsko oblo drvo.

3.2.1 Analiza proizvedenih količina i vrijednosti čvrstih biogoriva

Provedena je analiza proizvodnih kapaciteta, tržišta i kakvoće čvrstih biogoriva na području Županije Središnja Bosna. Prikupljeni su uzorci drvnih peleta, njih ukupno pet te drvene sječke piljevine (suhe i mokre) od koje se proizvodi pelet od jednog proizvođača. Uzorci su dostavljeni u Laboratorij za šumsku biomasu Zavoda za šumarske tehnike i tehnologije na šumarski fakultet u Zagrebu.

3.2.2 Laboratorijske analize

Priprema uzoraka

Prikupljeni uzorci drvnih peleta, piljevine i drvene sječke za laboratorijske analize pripremali su se četvrtinskom metodom. Od svakog pojedinog uzorka uzimala su se 3 uzorka (300–500 grama) za provođenje gravimetrijske analize. Također, iz uzoraka drvnih peleta uzimao se uzorak za provođenje granulometrijske analize. Od uzorka izuzetog za provođenje granulometrijske analize uzima se uzorak kojem se precizno mjere promjer i duljina.

Nakon provedene gravimetrijske analize uslijedilo je usitnjavanje uzorka na reznim mlinom Retch SM 300, frekvencijom vrtnje 1800 min⁻¹ na nominalnu veličinu čestica 1,0 mm. Tako usitnjeni uzorci podijeljeni su na uzorke za određivanje pepela i uzorke za određivanje udjela vode pri analize pepela. Kako bi došli do referentnog uzorka usitnjeni uzorci su se također obrađivali četvrtinskom metodom dok ne bi došli do željene mase od 30 g.
Gravimetrijska analiza zaprimljenog uzorka

Gravimetrijskom analizom u uzorcima peleta, drvne sječke i piljevine određivao se udio vode te razlika u masi uzoraka prije i nakon 24-satnog sušenja na temperaturi od 105°C. Masa uzorka prije i nakon sušenja se određuje mjerenjem analitičkom digitalnom vagom sa preciznošću očitanja na 0,1 g. Razlika masa uzorka prije sušenja i poslije sušenja jednaka je količini vode. Postotni udio udjela vode izražava se u odnosu na masu uzorka prije sušenja.

Gravimetrijska analiza laboratorijskog uzorka

Tehnički maseni udio vode u usitnjenim laboratorijskim uzorcima za određivanje pepela utvrđen je sukladno normi EN ISO 18134-1:2015. Sušenje u sušioniku Binder FD 115 na 105 ± 2 °C sa izmjenom zraka trajalo je 3 sata, odnosno do postizanja konstantne mase. Masa tih laboratorijskih uzoraka i masa standardno suhih uzoraka utvrđena je mjerenjem analitičkom vagom Mattler Toledo XA 204 preciznosti očitanja na 0,1 mg.
Izračunavanje udjela vode u uzorcima provodi se na način da se od mase uzorka u svježem stanju oduzima masa uzorka u standardno suhom stanju, a dobiveni broj dijeli se masom uzorka u svježem stanju te množi sa 100 kako bi se iskazao u postotku.

Utvrđivanje granulometrijskog sastava

Granulometrijska struktura uzorkovanog peleta utvrđena je metodom ručnog prosijavanja prema postupku opisanom u normi EN 15149-2:2010. Korišteno je sito okruglih otvora promjera 3,15 mm. Mase uzoraka prije analize i mase prosijanih uzoraka određene su mjerenjem laboratorijskom digitalnom vagom Kern 440-49A s preciznosti očitanja 0,1 g. Od mase prosijanih uzoraka četvrtinskom metodom su se pripremili uzorci za određivanje duljine i promjera. Minimalna masa uzorka za mjerenje iznosila je 40,0 grama. Pomičnim mjerilom određivala se duljina i promjer svakog pojedinačnog komada peleta. Nakon unošenja podataka o duljini i promjeru u Excel, odredila se prosječna vrijednost i standardna devijacija za svaki uzork.

Utvrđivanje udjela pepela

Maseni udio pepela u pripremljenim uzorcima usitnjene peleta utvrđen je sukladno normi EN ISO 18122:2015. Žarenje uzoraka vrši se prema propisanom režimu povećanja temperature i to: povećanje temperature na 250 °C tijekom 30 min, zatim održavanje temperature od 250 °C 60 min, zatim povećanje temperature na 550±10 °C tijekom 30 min te održavanje temperature od 550 ± 10 °C 120 min. Pošto se uzorci izvade iz peći stavlja se na hlađenje na keramičku ploču 5 min kako zbog prevelike temperature ne bi oštetili posudu za hlađenje. Nakon žarenja uzorci se hlađe u posudi za hlađenje 30 min (eksikator). Masa uzorka prije i nakon žarenja se određuje mjerenjem analitičkom digitalnom vagom sa preciznošću očitanja na 0,1 mg.
Postotni udio pepela se određuje na način da neto masu pepela nakon žarenja dijelimo s neto masom suhog uzorka i množimo sa 100.

3.2.3 **Kontrola kakvoće i klasifikacija prema ENplus**

Rezultati laboratorijskih istraživanja uspoređeni su s deklariranom kakvoćom peleta. Na temelju utvrđene kakvoće provedena je klasifikacija prema Enplus.
4. Rezultati

4.1 Proizvodnja i potrošnja čvrstih biogoriva u Županiji Središnja Bosna

Što se tiče proizvodnje ogrjevnog drva, ona se u prethodne dvije godine odvijala prema sljedećoj dinamici. U 2014. godini na području Županije proizvedeno je 1.411 m³ ogrjevnog drva četinjača i 92.807 m³ ogrjevnog drva listača I/III klase te 1.843 m³ ogrjevnog drva mekih listača. U 2015. godini proizvedeno je 1.592 m³ ogrjevnog drva četinjača i 89.159 m³ ogrjevnog drva listača I/III klase te 1.598 m³ ogrjevnog drva mekih listača. Također, u 2014. godini proizvedeno je 8.560 m³ drvnog obujma koji uključuje maloprodaju na panju te pobir i sječenicu, a za prethodnu 2015. godinu ona iznosi 8.330 m³. Potreba stanovništva za ogrjevnim drvom koje se na području Županije Središnja Bosna može smatrati primarnim i osnovnim energentom iznosi približno 400.000 m³ (Pružan i Konjalić 2011). Uspoređujući ukupni broj stanovnika na području Županije s godišnjom potrebom stanovništva za ogrjevnim drvom, dolazi se do brojke koja iskazuje prosječnu potrebu od 1,57 m³ ogrjevnog drva po stanovniku.

S aspekta osiguranja lokalnog stanovništva (ruralnog i urbanog) ogrjevnim dvrom listača od strane korisnika državnih šuma u 2015. godini izvršena je realizacija u količini od 99.446 m³.

Tablica 10. Proizvodnja ogrjevnog drva listača u 2015. godini

<table>
<thead>
<tr>
<th>Općina / šumarija</th>
<th>Proizvedena količina ogrjevnog drva, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bugojno</td>
<td>7 339</td>
</tr>
<tr>
<td>Busovača</td>
<td>4 509</td>
</tr>
<tr>
<td>Dobretići</td>
<td>96</td>
</tr>
<tr>
<td>Donji Vakuf</td>
<td>8 952</td>
</tr>
<tr>
<td>Fojnica</td>
<td>19 596</td>
</tr>
<tr>
<td>Gornji Vakuf-Uskoplje</td>
<td>11 762</td>
</tr>
<tr>
<td>Jajce</td>
<td>7 392</td>
</tr>
<tr>
<td>Kiseljak</td>
<td>6 815</td>
</tr>
<tr>
<td>Kreševo</td>
<td>9 684</td>
</tr>
<tr>
<td>Novi Travnik</td>
<td>5 719</td>
</tr>
<tr>
<td>Travnik</td>
<td>12 497</td>
</tr>
<tr>
<td>Vitez</td>
<td>5 085</td>
</tr>
<tr>
<td>Ukupno</td>
<td>99 446</td>
</tr>
</tbody>
</table>
Grafikon 1. Usporedba broja stanovnika i proizvodnje ogrjevnog drva u 2015. godini

Tablica 11. Predviđena potreba za ogrjevnim drvom u Županiji Središnja Bosna

<table>
<thead>
<tr>
<th>Općina/šumarija</th>
<th>Predviđena potreba za ogrjevnim drvom, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bugojno</td>
<td>49408</td>
</tr>
<tr>
<td>Busovača</td>
<td>28118</td>
</tr>
<tr>
<td>Dobretići</td>
<td>2557</td>
</tr>
<tr>
<td>Donji Vakuf</td>
<td>21956</td>
</tr>
<tr>
<td>Fojnica</td>
<td>19399</td>
</tr>
<tr>
<td>Gornji Vakuf-USkoplje</td>
<td>32865</td>
</tr>
<tr>
<td>Jajce</td>
<td>42795</td>
</tr>
<tr>
<td>Kiseljak</td>
<td>32612</td>
</tr>
<tr>
<td>Kreševo</td>
<td>8278</td>
</tr>
<tr>
<td>Novi Travnik</td>
<td>37416</td>
</tr>
<tr>
<td>Travnik</td>
<td>83967</td>
</tr>
<tr>
<td>Vitez</td>
<td>40562</td>
</tr>
<tr>
<td>Ukupno</td>
<td>399933</td>
</tr>
</tbody>
</table>

Predviđena potreba za ogrjevnim drvom je izračunata na način da se množio broj stanovnika u pojedinoj općini s prosječnom potrebom stanovnika za ogrjevnim drvom koja iznosi približno 1,57 m³.
S obzirom na prikazanu predviđenu potrebu za ogrjevnim drvom i godišnju proizvodnju po općinama, može se ustanoviti da je prisutan određeni nesrazmjer. Tako primjerice u općini Bugojno predviđena godišnja potreba za ogrjevnim drvom iznosi oko 49408 m\(^3\), a godišnja realizacija u državnim šumama u 2015. godini je iznosila 7339 m\(^3\). Znatan disbalans u proizvodnji i predviđenoj potrebi za ogrjevnim drvom je prisutan i u općinama Busovača, Donji Vakuf, Gornji Vakuf-Uskoplje, Jajce, Kiseljak, Novi Travnik, Travnik i Vitez. U općini Dobretići, razlika između proizvedene i predviđene potrebe za ogrjevnim drvom iznosi 2461 m\(^3\) i možemo reći da je zanemariva u usporedbi s drugim općinama. U općinama Fojnica i Kreševo prisutna je suprotna situacija, proizvedena količina ogrjevnog drva veća je od predviđene godišnje potrebe za tim energentom. Razlika u Fojnici iznosi 197 m\(^3\), a u općini Kreševo 1406 m\(^3\) u korist proizvedene količine ogrjevnog drva.

U općini Travnik s obzirom na instaliranu plinsku mrežu koju koriste uglavnom urbana kućanstva mogla bi se očekivati i manja predviđena potreba za ogrjevnim drvom od navedene. Ta brojka vjerovatno nije puno manja, uzimajući u obzir da je radi o općini s najvećom površinom i najvećim brojem stanovnika u Županiji te znajući da samo 28% stanovnika živi u gradu.

Ako na osnovu broja podignutih žežnica (475) izvršimo samo osnovnu analitičku obradu potreba za drvnim obujmom koju imaju postojeći objekti za proizvodnju drvog ugljena i objektivnih mogućnosti instaliranih objekata dolazimo do količine drvnog obujma od cca. 90 000 m\(^3\) na godišnjoj razini (Pružan i Konjalić 2011).

Opis postrojenja za proizvodnju peleta

Jedan od proizvodnih pogona jest pogon u sklopu poduzeća FIS u Vitezu, smješten je u poslovnom centru PC-96. Instalirani kapacitet za proizvodnju peleta iznosi 16.500
tona godišnje, a dnevno se proizvede približno 56 tona. Rad je organiziran u 3 smjene kroz cca. 25 radnih dana mjesečno. Od vrsta drva koriste se jela, bukva i smreka, i redovito se vrši okoravanje. U proizvodnju ulaze ostatci iz proizvodnje namještaja i piljevina koja se kupuje od susjednih pilana. Dnevna potreba za piljevinom iznosi 500 m₃, godišnje oko 125.000 m³. Utrošak sirovine za 1 tonu peleta po vrstama drveća je sljedeći: bukova sirovina 5,5 m³ i jelova sirovina 7,5-8 m³.

Cijena piljevine koju kupuju od drugih pilanara iznosi do 18 KM (približno 70 kuna) (franco) za 1 tonu.

Sirovina se na stovarištu razvrstava prema tri kriterija;

1. okorano i neokorano drvo (neokorani ostaci iz proizvodnje prolaze kroz drobilicu i koriste se u vlastitoj kotlovnici za loženje),
2. tvrdo i meko drvo te
3. komadni ostatci i ostalo.

Koristi se bubanjski iverač BRUKS Klockner (Drum Klockner) 240x650, 110 kW. Izlazna frakcija 25-30 x 3 mm. Sušara talijanskog proizvođača Scolari, kapaciteta 2 tone/sat, dužine 22 metra s dvije trake. Sito za mljevenje prosušene frakcije veličine očica 8 mm. Odnos mekog i tvrđeg drva je 2 : 1. Ne koriste se nikakve vrste aditiva. Instaliran je gravitacijski separator za odvajanje svih materija težih od prosušene piljevine. Nakon izlaska iz mješača piljevina sadrži otprilike 12,5 % vode te se postotak spušta na 7,5-8 % udjela vode nakon preše. Pelet se pakira u vreće po 15 kg.
Drugopроизводнодоузеце, »Rose-wood«, смješteno je u Gornjem Vakfu-Uskoplju. Nakon višegodišnje proizvodnje briketa оvo poduzeće koje je s proizvodnjom peleta započelo krajem 2015. godine, trenutno nastoji proizvesti 20.000 tona peleta u prvoj godini. Kapaciteti za proizvodnju peleta se proširuju s ciljanom proizvodnjom 30.000 tona godišnje. Pelet se proizvodi samo od bukve bez dodavanja vezivnih sredstava. Povećanjem kapaciteta za proizvodnju peleta u obzir dolaze i druge vrste drveća, prvenstveno četinjače jela i smreka kojima obiluje područje Županije Središnja Bosna.

Slika 27. Bubanjski iverač BRUKS Klockner

Slika 28. Sušara SCOLARI

Slika 29. Proizvodna linija Rose-wood (Izvor: GornjiVakuf-x.com)
Slika 30. Proširenje proizvodnog pogona Rose-wood

Na tržištu se donedavno mogao pronaći pelet iz poduzeća »Vitales« smještenog u Novoj Bili kod Travnika ali je poduzeće prekinulo s radom. Instalirani kapacitet za proizvodnju peleta iznosio je približno 15.000 tona godišnje. Na osnovu broja firmi koje se bave primarnom i finalnom preradom drva, te na osnovu tradicije u korištenju i preradi drva, može se reći da ova grana industrije može biti nositelj razvoja u Županiji. Upravo iz tog razloga ovaj rad se fokusira na detaljnem istraživanju drvnih peleta znajući da se u posljednjih nekoliko godina u Bosni i Hercegovini proizvodnja znatno povećala, s ukupnim instaliranim kapacitetom od preko 150 tisuća tona godišnje (video prilog »Trend proizvodnje i izvoza peleta«, AJB 2015).

4.2 Kakvoća drvnih peleta

4.2.1 Pelet 1

Deklariran je udio vode u iznosu ≤ 10 % što prema normi EN ISO 17225-2 odgovara razredu M10. Deklarirani promjer peleta je 6 mm što prema navedenoj normi odgovara razredu D06. Deklarirana je ogrjevna vrijednost u iznosu ≥ 18 MJ/kg. Laboratorijskim analizama utvrđeni udio vode iznosi 6,2 % što odgovara razredu M8, a utvrđeni promjer pepela iznosi 1,27 % što odgovara razredu kakvoće A1.5. Utvrđena je prosječna duljina peleta u iznosu 9,42 mm ± 3,25 mm što odgovara razredu D06. Utvrđen je prosječni promjer peleta koji iznosi 6,02 mm ± 0,10 mm i odgovara razredu kakvoće D06. Analizom je utvrđen udio finih čestica (< 3,15 mm) u iznosu 3,0 % što odgovara razredu F3.0.

Pri analizi je utvrđen udio vode manji od 10 % kao što stoji na deklaraciji s razlikom od 3,8 %. Deklarirani promjer se nalazi u granicama utvrđenoga. S obzirom na analizom
utvrđene značajke, ovaj pelet ne zadovoljava kriterije ENplus certifikacije. Ono što ovaj pelet deklasira jest udio finih čestica koji iznosi 3,0 %, a za sve tri klase kakvoće mora biti ispod 1 %.

4.2.2 Pelet 2

Deklarirani udio vode ovog peleta iznosi < 10 % što prema normi EN ISO 17225-2 odgovara razredu kakvoće M10. Deklarirani udio pepela iznosi 0,6 % i prema tome odgovara razredu kakvoće A0.7. Deklarirana duljina iznosi 10–25 mm i odgovara razredu kakvoće D06. Deklariran je promjer u iznosu 6 mm što odgovara razredu D06. Deklarirana ogrjevna vrijednost iznosi 5,75 kWh/kg.

Utvrđeni udio vode u iznosi 6,8 % što odgovara razredu M8, a udio pepela iznosi 1,18 % što odgovara razredu kakvoće A1.5. Prosječna duljina peleta iznosi 13,77 mm ± 4,67 mm što odgovara razredu kakvoće D06. Utvrđen je prosječni promjer peleta koji iznosi 6,0 mm ± 0,08 mm i odgovara razredu kakvoće D06. Udio finih čestica (< 3,15 mm) je utvrđen u iznosu 0,51 % što odgovara razredu F1.0.

Razlika između deklariranog i utvrđenog udjela vode iznosi 3,2 % i ovaj pelet svrstava u povoljniji razred kakvoće. Razlika deklariranog i utvrđenog udjela pepela iznosi 0,58 % što automatski ne zadovoljava kriterije za A1 klasu prema Enplus. Utvrđena duljina i promjer peleta nalaze se u deklariranom rasponu. Dakle, prema ENplus ovaj pelet spadao bi u A2 klasu, razlog tomu je utvrđeni udio pepela, koji za A1 klasu ne smije iznositi više od 0,7 %.

4.2.3 Pelet 3

Deklarirani udio vode iznosi 7,94 % što prema EN ISO 17225-2 odgovara razredu kakvoće M8. Deklarirani udio pepela iznosi 0,67 % i prema tome odgovara razredu kakvoće A0.7. Deklarirana ogrjevna vrijednost iznosi 4,8 kWh/kg.

Analizom je utvrđen udio vode u iznosi 9,8 % što odgovara razredu M10, a udio pepela iznosi 1,5 % što odgovara razredu kakvoće A1.5. Prosječna duljina peleta iznosi 12,49 mm ± 5,70 mm što odgovara razredu kakvoće D06. Utvrden je prosječni promjer peleta koji iznosi 6,0 mm ± 0,08 mm i odgovara razredu kakvoće D06. Analizom je utvrđen udio finih čestica u iznosu 0,94 % što odgovara razredu A1.0.

Razlika između deklariranog i utvrđenog udjela vode iznosi 1,86 % što više ne odgovara razredu M8 već razredu kakvoće M10. Utvrđena je razlika u udjelima pepela u iznosu 0,83 %. Prema ENplus ovaj pelet zadovoljio bi klasu A2.

4.2.4 Pelet 4

Deklarirani udio vode iznosi 6,31 % što odgovara razredu M8 prema normi EN ISO 17225-2. Deklarirani udio pepela iznosi 0,62 % i prema tome odgovara razredu kakvoće A0.7. Deklarirana duljina iznosi 19,42 mm što odgovara razredu kakvoće D06. Deklarirani promjer peleta iznosi 6 mm što odgovara razredu D06. Deklarirana je ogrjevna vrijednost u rasponu od 16,84 do 19,28 MJ/kg.
Analizom je utvrđen udio vode u iznosu 9,8 % što odgovara razredu M10, a udio pepela iznosi 0,71 % što odgovara razredu kakvoće A1.0. Prosječna duljina peleta iznosi 13,03 mm ± 6,65 mm što odgovara razredu kakvoće D06. Utvrđen je prosječni promjer peleta koji iznosi 5,92 mm ± 0,14 mm i odgovara razredu kakvoće D06. Udeo finih čestica (< 3,15 mm) iznosi 0,01 % što odgovara razredu kakvoće A1.0.

Razlika između deklariranog i utvrđenog udjela vode iznosi 3,49 % te bi po tome ovaj pelet spadao u razred kakvoće M10. Razlika u udjelima pepela iznosi 0,9 % što utječe na to da ovaj pelet više ne odgovara razredu kakvoće A0.7 već ga svrstava u razred A1.0. Prema tome ovaj pelet ne zadovoljava kriterije najviše A1 klase peleta prema ENplus standardima te ga to svrstava u A2 klasu. Utvrđena prosječna duljina peleta i promjer nalaze se u granicama onih koje se deklarirane. Također, udio finih čestica koji je manji od 1 % i iznosi 0,01 % omogućava da se ovaj pelet svrsta u A1 klasu prema ENplus, ako bi se ustroio snižio udio pepela ispod 0,7 %.

4.2.5 Pelet 5

Deklarirani udio vode iznosi ≤ 10 % što odgovara razredu M10. Deklarirani promjer peleta iznosi 6 mm što prema EN ISO 17225-2 odgovara razredu D06. Deklarirana je ogrjevna vrijednost u iznosu ≥ 18 MJ/kg.

Utvrđeni udio vode u peletu iznosi 6,6 % što odgovara razredu M8, a udio pepela iznosi 1,27 % što odgovara razredu kakvoće A1.5. Prosječna duljina peleta iznosi 10,52 mm ± 3,60 mm što odgovara razredu kakvoće D06. Utvrđen je prosječni promjer peleta koji iznosi 6,06 mm ± 0,08 mm i odgovara razredu kakvoće D06.

Razlika između deklariranog i utvrđenog udjela vode iznosi 3,4 % te ovaj pelet po tome smješta u razred kakvoće M8. Utvrđeni promjer peleta nalazi se u granicama deklariranoga. S obzirom na utvrđeni udio pepela koji iznosi 1,27 % prema EN ISO 17225-2 pelet odgovara razredu kakvoće A1.5. Prema utvrđenim značajkama ovaj pelet spadao bi u A2 klasu prema ENplus.

Kao sirovina za proizvodnju ovog peleta analizirana je i suha piljevina. Utvrđeni udio vode u iznosu od 10,0 % odgovara razredu kakvoće M10. Udio pepela iznosi 1,28 % i odgovara razredu A1.5.

Analizirana je i mokra piljevina proizvedena od jelje i bukve. Utvrđeni udio vode u iznosu od 40,0 % odgovara razredu kakvoće M40. Udio pepela iznosi 1,32 % i odgovara razredu A1.5.

Također, analizirana je i drvena sječka za proizvodnju ovog peleta. Utvrđen je udio vode u iznosu 46,2 % što odgovara razredu M50. Utvrđen je udio pepela u iznosu 0,79 % što odgovara razredu A1.0.

Pretpostavka je da bi se kvaliteta ovog peleta mogla poboljšati ukoliko bi se za proizvodnju što više koristila analizirana sječka kojoj je utvrđen udio pepela od
0,79 %. Usto, preporuča se okoravanje sirovine koja ulazi u proizvodni proces, znajući da smanjenje učešća kore rezultira nižim udjelom pepela u peletu.

4.3 Usporedba deklarirane i utvrđene kakvoće

Nijedan uzorak peleta nije imao deklariranu kakvoću prema ENplus. Od pet analiziranih uzoraka peleta, s obzirom na utvrđene udjele vode, pepela i finih čestica te izmjerene duljine i promjere, nijedan uzorak ne zadovoljava kriterije najviše A1 klase dok bi četiri uzorka spadala u A2 klasu, a jedan uzorak ne zadovoljava kriterije ENplus certifikacije.

Kod analiziranih uzoraka najveća su odstupanja s obzirom na udio pepela u peletu. Taj udio bio je presudan za četiri uzorka peleta koja s obzirom na udio pepela viši od 0,7 % spadaju u A2 klasu prema ENplus. Jedan uzorak peleta zbog udjela finih čestica iznad 1,0 % ne zadovoljava kriterije ENplus certifikacije.
5. Zaključak

Proizvodnja ogrjevnog drva u državnim šumama u Županiji Središnja Bosna jako je niska s obzirom na predviđenu potrebu za tim energentom. Primjerice, u 2015. godini od strane korisnika državnih šuma izvršena je realizacija u količini od 99 446 m3 ogrjevnog drva listača, dok godišnja predviđena potreba na razini Županije prema Pružanu i Konjaliću (2011) iznosi približno 400 000 m3 ogrjevnog drva. Proizvedene količine ogrjevnog drva četinjača su u ovom kontekstu zanemarive. Sumnja se na to da se dio razlike između proizvedene i predviđene količine realizira bespravnim sjećama. Kao moguće rješenje za ublažavanje ovog negativnog trenda predlaže se uvoz ogrjevnog drva iz susjednih županija te informiranje i poticanje stanovništva na korištenje drugih oblika čvrstih biogoriva poput drvnih peleta i drvnih briketa. Kroz promotivno-informativne aktivnosti se može ukazati na financijske prednosti efektivnijeg korištenja drva za proizvodnju toplinske energije. S druge strane, krajnjim potrošačima se mogu osigurati informacije o pozitivnom utjecaju na stanje okoliša kroz korištenje šumske biomase za proizvodnju energije i time utjecati na ekološku svijest krajnjih potrošača.

Proizvodnja drvnih peleta u Bosni i Hercegovini pa tako i u ovoj Županiji bilježi sve veći rast. To pokazuje opredijeljenost pojedinih privatnih poduzeća koja proširuju svoje kapacitete i odlučni su proizvoditi biogorivo koje ima veliki izvozni potencijal. Trenutno instalirani kapaciteti za proizvodnju drvnih peleta iznose 20 000 tona godišnje od čega 80 % završava u izvozu za Italiju, Austriju i Sloveniju. Ostatka proizvedenih peleta završava na domaćem tržištu.

Od pet analiziranih uzoraka peleta nijedan nema ENplus certifikat. Važnost certifikacije drvnih peleta bitna je iz razloga jednostavnijeg i sigurnijeg plasmana proizvoda na inozemno tržište. Svakako, preporuča se uvođenje ENplus certifikata jer bi to u konačnici rezultiralo i boljom izvoznom cijenom koja bi imala opravdanje u kvaliteti proizvoda. Od pet analiziranih uzoraka nijedan uzorak ne zadovoljava kriterije A1 klase dok bi 2 uzorka spadala u A2 klasu, te tri uzorka u B klasu. Kroz tehnološka poboljšanja treba težiti što kvalitetnijoj proizvodnji jer bi se samo na taj način u slučaju certificiranja proizvoda mogla zadovoljiti viša klasa i bolja prodajna cijena.

Povećana potražnja za obnovljivim izvorima energije na europskom i svjetskom tržištu, a posebno za šumskom biomasom, novi je izazov u šumarstvu, pa se javlja potreba za uvođenjem novih tehnologija pridobivanja energijskog drva i većeg korištenja raspoloživih resursa. Novi šumski proizvodi, kao što su drvni peleti, drvena sječka i kratko cijepano drvo, imaju sve veću dodanu vrijednost u odnosu na jednometarsko ogrjevno drvo. Uvođenjem novih tehnologija pridobivanja energijskog drva i većeg korištenja raspoloživih resursa u šumama stvara se dodana vrijednost kroz nove šumske proizvode, a i mogućnost većeg zapošljavanja ruralnog stanovništva (Zečić 2015).
6. Literatura

44. Mogućnosti korištenja šumske biomase iz šumarstva i drvene industrije u BiH, 2014. Razvojni program Ujednjenih nacija u Bosni i Hercegovini, Sarajevo, 1–16.
49. Prostorni plan Županije Središnja Bosna (2005.), »Službene novine Županije Središnja Bosna«, broj 11/05.
70. http://www.german-pellets.de
73. http://www.agroklub.com
74. http://www.drveniugljen.hr
75. http://www.fiskars.com
76. http://www.forum.hr
77. http://www.kako.hr
78. http://www.ogrjev.hr
81. http://www.peletgrupa.hr
82. http://www.siska.hr
83. http://www.usitfbih.ba
86. http://www.drvinipelet.hr