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Abstract: The quantity and quality of seedlings in the nursery has an impact on the success of
re-establishment and later growth. High germination rates enable a sufficient number of seedlings,
and their quality is assessed using a number of parameters, including seedling height and root collar
diameter. These parameters are influenced in some species by seed size, but the correlation between
them is species-specific. The model species in this research was sweet chestnut (Castanea sativa Mill.),
and seeds from 12 populations from two distinct biogeographical regions of Croatia were collected.
We examined the influence of seed size on four parameters: germination rate, seedling height, root
collar diameter and sturdiness quotient. Seed size has been shown to have a positive influence on
both seedling height and root collar diameter, whereas no such correlation was noted for germination
rate and sturdiness quotient. Significant differences in nut size and seedling growth parameters were
found between the Mediterranean and continental populations, with higher values observed in the
coastal Mediterranean populations. We concluded that seed origin and seed size have a significant
impact on seedling growth and are important factors to consider when choosing seed material.
Further nursery operations should consider seed origin and local environmental conditions when
choosing seedlings for reforestation efforts and general forest operations.

Keywords: seed size; germination; seedling height; root collar diameter; sweet chestnut

1. Introduction

The nursery sector and seedling production are an integral part of most tree growing
programs, providing landholders and communities with high quality planting stock [1,2].
Artificial regeneration requires seedlings that can compete with natural vegetation, tolerate
browse damage, and survive adverse conditions [3]. Unlike agricultural crops, seeds
from forest trees are often of limited availability, have lower germination rates and are
more expensive to come by, making the highest possible germination rate an important
factor of production [4]. High germination rates can be aided by pre-sowing germination
tests, which can provide nursery operators with an accurate estimation of viable seeds.
As a result, the proper sowing rate can be selected to produce the optimum number of
seedlings [5]. The quality of seedlings obtained from the nursery will affect the hardening
phase of the seedling [6], as well as re-establishment in the field, and has an important
role in its subsequent productivity [7,8]. Evaluation of seedling quality is based on the
monitoring of growth parameters, such as the morphological attributes of shoot height,
root collar diameter and root systems [9]. In addition, sturdiness quotient, a parameter
based on non-destructive measurements of root collar diameter and height, can give a
more accurate picture of the viability and vigor of the seedling [10]. Together with the
assessment of drought resistance, freezing tolerance, mineral nutrient status, root growth
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potential, and root electrolyte leakage, this evaluation provides a more accurate picture of
seedling health and can occur at various stages of nursery production. These parameters
and assessments ensure a practical monitoring method and provide initial information on
the expression of future growth [11].

Besides being used in forestry, high quality seedlings are the backbone of forest and
landscape restoration programs. Failure to produce enough plants of sufficient quality
can result in unsuccessful outplanting programs [12]. In recent years, the international
community has set the goal of restoring millions of hectares of deforested and degraded
lands. Availability of quality nursery seedlings is a crucial component and precursor for
meeting this target [12]. Nursery production, especially of broadleaved species, contributes
to the sustainability of plantation forestry, promotes community forests, and secures the
preservation of endangered species or genotypes.

Some Mediterranean species, like sweet chestnut (Castanea sativa Mill., Fagaceae),
may have lost their role as a source of subsistence food, but they continue to play a major
role in the cultural context and in many agroforestry systems [13]. Sweet chestnut is a
noble hardwood species, cultivated for centuries as a nut-producing tree. Besides having
edible nuts, the trees are of high value in the production of tannins, honey, and timber [14].
Native across the Mediterranean region and in Asia Minor, sweet chestnut can be found in
naturalized stands, managed coppice and grafted fruit orchards [15,16]. Thus, an important
aspect of sweet chestnut nursery production is the production of high-quality seedlings
with high survival capability for reforestation efforts in forestry, as well as the production
of rootstock for grafting cultivated varieties.

The aim of this study was to determine the differences in seed germination and two
seedling growth parameters, namely seedling height and root collar diameter, between
12 sweet chestnut populations, originating from two distinct biogeographical regions. The
correlation between seed size and growth parameters was examined as well. The results of
this research could be significant for future nursery production of sweet chestnut seedlings.

2. Materials and Methods
2.1. Experimental Material

The nuts used in this research were collected from 12 native sweet chestnut popula-
tions in Croatia (Table S1). Populations Poreč, Učka, Cres and Buje represented the Mediter-
ranean biogeographical region, and populations Krndija, Psunj, Bilogora, Moslavačka gora,
Medvednica, Žumberak, Samoborsko gorje and Zrinska gora the temperate, continental
biogeographical region. In each population, ten trees were selected for sampling, each
at least 50 m apart to minimize the possibility of half-sib progeny being mixed. Finally,
200 nuts were collected from each individual tree. Both central and side nuts from burrs
were collected. Nuts were collected in October 2019 and were immediately prepared for
stratification to prevent desiccation.

Seed preparation and stratification were performed according to ISTA (International
Seed Testing Association) rules [17]. The float/sink test was performed to remove empty
or damaged nuts. Other visibly damaged nuts were also discarded. Healthy nuts were
counted and weighed individually and for total fresh mass (SM) to the nearest 0.01 g. To
prepare the stratification medium, distilled water and quartz sand (granules 0.1–0.4) were
mixed, with the water having 37% of the total volume of sand. The stratification medium
and nuts were mixed in a ratio of approximately 2:1, and this mixture was placed in
perforated plastic freezer bags. The bags were labelled and placed in a refrigerator at 4 ◦C.
Plastic bags were checked on a weekly basis for mold and germinated seeds. Moldy, rotten
nuts were removed to prevent the spread of decay, whereas germinated seeds were pushed
deeper into the stratification medium to prevent drying out. To preserve the moisture
within the stratification medium, distilled water was sprayed over the medium every
seven to fourteen days, whenever it was noticed that the sand medium was drying out.
Stratification ended in March, and germinated seeds were transplanted into the nursery.
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2.2. Experimental Design and Nursery Production

Raised beds were prepared for the planting of the germinated seeds. Each of the
12 populations, represented by 10 trees each, were sown in three repetitions. The nursery
beds were relatively uniform and the environmental conditions identical. Within each bed,
six rows, approximately 15 cm deep and spaced 25 cm apart, were dug out, and seeds were
planted with their radicule facing downward. Each tree was clearly marked with wooden
stakes tagged with metal plates and the corresponding tree code. Each seed had ample
growing space, being spaced 5 cm apart. Beds were covered with agrotextile (frost cloth)
until mid-April. Throughout the growing season, young plants were regularly checked,
watered during the summer, and the beds were weeded. The seedlings were healthy, and
no fertilization or anti-disease treatments were applied.

2.3. Germination and Seedling Data Collection

Seed germination, i.e., plumule emergence was recorded for each tree on a weekly
basis. The percentage of germinated seedlings was calculated as the number of seedlings
with emerged plumule in the total number of sown seeds (emerged plumule/all sown
seeds × 100). Seeds that germinated during the stratification were included within the
germinated seeds, since germination during stratification was uniform.

All seedlings were measured in early December 2020. Seedling height (SH) was
measured with a measuring tape to the nearest 0.1 cm, from root collar up to the apical
bud. Root collar diameter (RCD) was measured with a digital caliper to the nearest 0.01 cm.
Sturdiness quotient was calculated as the ratio of the height of the seedling to the root
collar diameter [18,19].

2.4. Data Analyses

All statistical analyses were performed using the software packages STATISTICA
version 13 [20] and R v.3.4.3 [21]. For all the studied variables (seed mass, germination,
seedling height, root collar diameter and sturdiness quotient), standard descriptive sta-
tistical parameters were calculated: arithmetic mean (X), standard deviation (SD) and
coefficient of variation (CV). Correlations between variables were analyzed using Pear-
son’s correlation coefficient. To assess the possibility of conducting multivariate statistical
analyses and parametric tests, the symmetry, unimodality and homoscedasticity of the
data were verified [22]. Assumptions of normality were checked using the Shapiro–Wilk
test, and the assumption of homogeneity of variance was checked using Levene’s test.
Statistically significant differences between the studied sweet chestnut populations were
tested using analysis of variance (ANOVA). To explore the variation in individual studied
traits, differences among population means were tested for each trait (Y) using the model
Y = P + T(P) + e, where P was the population effect, T(P) was the tree effect nested within
the population, and e was the error. For each analysis, statistically significant differences
between means were identified using the Tukey–Kramer multiple comparison test, at
p ≤ 0.05. Multivariate statistical methods were used to identify the population differen-
tiation. Principal component analysis based on five studied traits was performed. The
biplot was constructed by two principal components showing the analyzed individuals
and traits. In addition, cluster analysis was used to identify population differentiation. The
conducted cluster analysis resulted in a hierarchical tree, where the unweighted pair-group
method with arithmetic mean (UPGMA) was used to join the clusters, and the Euclidean
distance was used to define the distance between the studied objects. Prior to ANOVA and
multivariate statistical analysis, values of the germination percentages were square root
arcsine transformed. In addition, the input data in multivariate statistical methods were
previously standardized, i.e., standardization of characters to zero mean, and unit standard
deviation was performed prior to each multivariate analysis.
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3. Results and Discussion

Statistically significant differences between the studied populations were found for
germination rates (F = 3.317, p < 0.001), sturdiness quotient (F = 3.334, p < 0.001), and
the three measured parameters: seed mass (F = 6.824, p < 0.001), height of the seedling
(F = 16.658, p < 0.001), and diameter of the root collar (F = 6.118, p < 0.001). Similarly,
statistically significant differences among nested trees within populations were confirmed
for all of the studied traits. In addition, most of the population pairs from different
biogeographical regions had significant pairwise values (Table 1).

Table 1. Arithmetic means (X ), standard deviations (SD) and coefficients of variation (CV) for seed mass (SM), germination
rates, seedling height (SH), root collar diameter (RCD) and sturdiness quotient (SQ) in 12 sweet chestnut populations. Popu-
lation ID: BU—Buje; CR—Cres; PO—Poreč; UC—Učka; BI—Bilogora; KR—Krndija; ME—Medvednica; MG—Moslavačka
gora; PS—Psunj; SG—Samoborsko gorje; ZG—Zrinska gora; ZU—Žumberak. Means marked with different letters were
significantly different according to the Tukey–Kramer multiple comparison test, at p ≤ 0.05 level.

Population
ID

Seed Mass (g) Germination (%) Root Collar D. (mm) Seedling Height (cm) Sturdiness Quotient

¯
X ± SD

CV
(%)

¯
X ± SD

CV
(%)

¯
X ± SD CV (%) ¯

X ± SD
CV
(%)

¯
X ± SD

CV
(%)

BU 6.0 ± 1.6 ab 25.7 57 ± 16.6 ab 29.4 5.2 ± 1.2 a 23.5 24.0 ± 4.5 ab 18.5 4.7 ± 0.8 abc 16.9
CR 10.5 ± 2.4 d 22.6 67 ± 12.8 abc 19.0 8.4 ± 1.1 bc 12.8 32.3 ± 4.2 cd 13.1 3.9 ± 0.3 abc 8.1
PO 7.8 ± 1.1 ac 14.4 58 ± 12.9 abc 22.2 9.5 ± 1.9 c 19.9 38.8 ± 6.2 de 15.9 4.2 ± 1.1 abc 24.9
UC 9.4 ± 2.8 cd 30.2 69 ± 17.0 abc 24.8 8.5 ± 1.9 bc 22.3 40.5 ± 5.6 e 13.8 4.9 ± 1.0 bc 20.7
BI 5.0 ± 1.5 b 31.0 60 ± 15.3 abc 25.3 7.3 ± 1.1 abc 14.9 25.5 ± 4.4 abc 17.4 3.5 ± 0.6 a 15.8
KR 7.0 ± 1.1 abc 16.3 80 ± 12.1 c 15.2 5.9 ± 1.5 a 25.0 29.0 ± 4.0 bc 13.8 5.1 ± 1.0 c 19.6
ME 6.7 ± 2.3 abc 34.0 63 ± 17.6 abc 27.9 6.6 ± 1.5 ab 23.0 26.5 ± 5.0 abc 18.9 4.1 ± 0.5 abc 11.0
MG 7.0 ± 2.2 abc 30.8 62 ± 17.0 abc 27.5 6.5 ± 1.4 ab 21.7 26.5 ± 6.1 abc 23.0 4.1 ± 0.5 abc 12.1
PS 7.0 ± 0.7 abc 9.8 70 ± 12.0 abc 17.1 7.0 ± 1.9 ab 26.7 26.2 ± 4.8 abc 18.3 4.0 ± 1.1 abc 27.1
SG 6.7 ± 1.4 ab 21.2 77 ± 10.6 bc 13.7 5.9 ± 2.0 a 33.9 21.4 ± 3.7 a 17.1 3.9 ± 1.2 abc 29.6
ZG 6.2 ± 1.4 ab 21.9 53 ± 17.5 a 32.9 6.4 ± 1.3 ab 21.0 23.6 ± 2.1 ab 9.1 3.8 ± 0.5 ab 12.4
ZU 7.8 ± 2.0 ac 25.5 55 ± 13.9 a 25.3 6.2 ± 2.0 ab 33.0 23.6 ± 4.4 ab 18.8 4.0 ± 0.9 abc 21.6

The average seed mass of three out of four Mediterranean populations had the highest
values: Cres (SM = 10.5 ± 2.4 g), Učka (SM = 9.4 ± 2.8 g) and Poreč (SM = 7.8 ± 1.1 g).
Seeds from Bilogora and Buje populations had the lowest values: 5.0 ± 1.5 g and 6.0 ± 1.6 g,
respectively (Table 1). Previously published data by Idžojtić et al. [23] showed similar
values, with Mediterranean populations having the heaviest nuts. Some populations,
like Moslavačka gora, showed notable differences in seed mass results from this research
compared with the results from 2009 [23]. Seasonal variation and the specifics of the envi-
ronmental conditions of each population are most likely to be the cause of this variability
over the years [24–27]. In addition, Idžojtić et al. [23] did not measure the central fruit
inside the chestnut burrs, which differs morphologically and is likely to influence the
average seed mass values.

Chestnut seeds are the least dormant and easiest to germinate of all tree species,
rotting easily and requiring high moisture content in order to stay viable [28]. Therefore,
stratification is needed to not only overcome dormancy but to keep the seeds viable as well.
The ideal temperature for stratification is in the range of +3 to +5 ◦C [28]. Reported average
germination rates of chestnut seeds are within the range of 65% to 87% [29,30]. Germination
rates obtained in this study were comparable at 53% to 80% (Table 1). Mediterranean
populations had somewhat lower germination rates on average (57%–69%), compared with
continental populations (53%–80%). It is reported that seed germination is influenced by
both genetic as well as environmental factors [31]. All 12 populations had already started to
germinate during stratification, and seed emergence occurred simultaneously. In addition,
it is important to note that germination during stratification did not negatively affect the
sowing and development of seedlings. The same results were previously reported by Tilki
and Alptekin [32].

Seedlings from the three Mediterranean populations (Cres, Učka and Poreč) were
higher on average and had a larger root collar diameter than the continental popula-



Forests 2021, 12, 858 5 of 11

tions (Table 1). The tallest seedlings, on average, were measured in the population Učka
(SH = 40.5 ± 5.6 cm), and the seedlings with the largest root collar diameter on average
were measured in the population Poreč (RCD = 9.5 ± 1.9 mm). Samoborsko gorje was the
population with the shortest seedlings (SH = 21.4 ± 3.7 cm), and population Buje had the
lowest average value for the root collar diameter (RCD = 5.2 ± 1.2 mm).

Sturdiness quotient values ranged from 3.5 ± 0.6 (Bilogora population) to 5.1 ± 1.0
(Krndija population). The ideal value for a seedling to be considered sturdy is less than
six [19], and our results are within the recommended values. This proves that seedlings
are vigorous and robust, making them more likely to survive out-planting, especially on
windy or dry sites [18].

The first two components from the principal component analysis explained 38.21%
and 28.02% of the total variation, respectively (Table 2). The first principal component
(PC1) was highly negatively correlated with seedling height and root collar diameter,
and moderately negatively with fruit size. The second principal component (PC2) was
strongly negatively correlated with the sturdiness quotient, and moderately positively
with the root collar diameter. From the biplot on Figure 1, it is quite evident that the
coastal Mediterranean populations are associated with larger seeds and seedlings, and
the continental populations with smaller seeds and seedlings. However, population Buje
was somewhat specific, characterized by unexpected values of seed size and seedling
growth. Although biogeographically related to the rest of the Mediterranean populations,
population Buje was characterized by smaller nuts and smaller seedlings, and it showed
similarity and linkage to the populations from the continental region (Figure 2). This
curious fact can be attributed to previously published results by Poljak et al. [33]. The
mentioned authors [33] revealed that the Mediterranean population Buje exhibits clear
genetic differentiation from other Croatian coastal populations. A similar effect of genetic
variability on seedling growth was noted for several other species [34–37].

Table 2. Pearson’s correlation coefficients between five seeds and seedling traits and scores of the
first three principal components.

Trait
PC—Principal Component

PC1 PC2 PC3

Seed Mass −0.587506 −0.354325 0.183710
Gremination −0.257149 −0.259451 −0.930168

Root Collar Diameter −0.855226 0.481539 0.015402
Seedling Height −0.869198 −0.278959 0.154842

Sturdiness Quotient 0.111337 −0.947850 0.148190
Eigenvalue 1.91 1.40 0.95

% of Variance 38.21 28.02 18.90

In this research, we found no evidence of a decisive influence of seed weight on ger-
mination performance, with only extremely low correlations being observed between these
two parameters (Table 3). Although the data for sweet chestnut is limited, the connection
between seed size, germination rate and survival has been well-studied in another Fagaceae
genus, i.e., oak (Quercus L.). Our results are in accordance with Alptekin and Tilki [38]
and Garcia-De La Cruz et al. [39], who concluded that seed size did not affect the acorn
germination rate or seedling emergence of the four analyzed oak species. On the other
hand, Purohit et al. [40] and Pandey et al. [41] described a positive relationship between
seed size and germination rate in oaks. In addition, they concluded that the impact of seed
size on germination rate was primarily due to the increased water content in larger seeds.
Similar positive correlations between seed mass and germination rate were documented in
other plant species [42–46]. These different results, even within the same genus, can possi-
bly be explained as a species-specific reaction to the environmental conditions, variation
in maternal origin, differences in provenance and intraspecific variation within a larger
range of a species [39,47]. However, storage and proper stratification prior to sowing can
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also influence the germination and subsequent development of seedlings [32]. This was
confirmed by Hatzig et al. [31]. Their results indicated that genetic determinants for the
manifestation of seed dormancy may be a decisive factor influencing the inheritance of
germination performance in plant species.

Figure 1. Biplot of principal component analysis based on seed mass, gemination and seedling
characteristics in the 12 studied sweet chestnut populations. Population ID: BU—Buje; CR—Cres;
PO—Poreč; UC—Učka; BI—Bilogora; KR—Krndija; ME—Medvednica; MG—Moslavačka gora;
PS—Psunj; SG—Samoborsko gorje; ZG—Zrinska gora; ZU—Žumberak.

Similar to the correlation between seed size and germination rate, varying results
exist for the correlation between seed mass and seedling height and seed mass and root
collar diameter. In our research, a low-to-moderate positive correlation between seed mass
and seedling height, as well as seed mass and root collar diameter, has been observed
(Table 3). These correlations for sweet chestnut were found to be positive by Soylu and
Serdar [48] and Cicek and Tilki [49], as well as by Pinchot et al. [3] and Shepard et al. [50]
for Chinese and American chestnut species. Purohit et al. [40] reported the same results for
two important central Himalayan oak species, Q. semecarpifolia Sm. and Q. oblongata D. Don.
They concluded that seedlings grown from larger acorns generally had significantly longer
stems and root collar diameters, as well as a greater number of leaves and total leaf area.
Furthermore, Jarvis [51], Ke and Werger [52], Seiwa [53], Gómez [54], Navarro et al. [55],
González-Rodríquez et al. [56], and Pesendorfer [57] found out that the acorn mass of
various oak species was positively correlated with seedling height growth parameters
and survival. In general, the fact that larger seeds produced significantly more vigorous
seedlings than smaller ones is well-documented in various tree [54,58,59] and crop [60–62]
species and varieties. In contrast, Clark and Schlarbaum [63] revealed that neither acorn
size nor mass could be used reliably to predict seedling survival or the morphological
indicators of seedling quality. However, they hypothesized that the results from their study
were affected by an unusually long growing season and advanced fertilization regimes at
the nursery, which may have negated acorn size/mass effects on seedling growth.
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Figure 2. Tree diagram of the 12 sweet chestnut populations studied. The unweighted pair-group
method with arithmetic mean (UPGMA) was used to join the clusters, and the Euclidean distance
was used to define the distance between the studied populations.

Table 3. Pearson’s correlation coefficient among the seed mass, germination and seedling charac-
teristics of the 12 sweet chestnut populations studied. Statistically significant values are marked in
bold. Levels of significance: *** significant at p < 0.001, ** significant at 0.001 < p < 0.01, * significant
at 0.01 < p < 0.05, ns non-significant values (p > 0.05).

Trait SM G RCD SH SQ

Seed Mass (SM) ns * ** ns
Gremination (G) 0.097 ns ns ns

Root Collar Diameter (RCD) 0.295 0.075 *** ***
Seedling Height (SH) 0.381 0.138 0.657 *

Sturdiness Quotient (SQ) 0.125 0.070 −0.502 0.272

As already mentioned, seed size can influence the survival rate of seedlings, since
larger seeds provide young plants with a number of advantages in dealing with envi-
ronmental stressors [46]. For instance, several authors noted increased drought tolerance
in seedlings grown from larger seeds [41]. Thus, our results are somewhat consistent
with these studies and suggest that larger nuts and larger seedlings from Mediterranean
populations may be a result of the major selective force acting on adaptation to drought.
Large-seeded trees produce more robust seedlings that are more likely to survive drought
in the Mediterranean climate.

These findings may be applicable in the production of rootstock for cultivated sweet
chestnut varieties in these areas. Taller seedlings and larger root collar diameters from
Mediterranean populations make them the best choice for vegetative propagation and use
in agroforestry. Rootstocks have considerable effects on the performance of the grafted scion
and subsequent growth, making the production of suitable rootstock a priority in nurseries.
In order to obtain rootstock of native chestnut genotypes, high seed germination rates
and seedling emergence, as well as vigorous growth and drought resistance, are desirable
parameters [64]. Considering that all populations have shown a desirable sturdiness
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quotient (values < 6), seedlings from all 12 populations could be used in out-planting
programs and rootstock production. The biogeographical provenance of seeds, however,
must be taken into account in order to provide optimal suitability for newly produced
seedlings in the targeted location of out-planting or orchards.

4. Conclusions and Practical Implications

Differences in seed and seedling size can be attributed to intraspecific variability
and the development of ecotypes. The Mediterranean populations in this research have
been shown to have larger seeds, and their seedlings were characterized by more vig-
orous growth. These populations are genetically and environmentally specific and thus
exhibit specific growth parameters. In addition, dry environmental conditions in their
natural habitat could also influence the selection of larger seeds, as this provides increased
drought tolerance.

Seed size positively correlated with both seedling height and root collar diameter.
In contrast, we found no evidence of the decisive influence of seed mass on germination
rate and sturdiness quotient. Larger seeds give young seedlings a head start in early
development by providing them with enough nutrients to spur growth. This aids early
competition in the natural setting and increases the likelihood of this trait further surviving
in the population. In contrast, the ideal conditions of stratification and later nursery
treatments provided equal germination conditions for all seeds, regardless of their size.
This could explain the lack of influence of seed mass on germination. By providing
optimum and uniform germination conditions, nurseries can maximize the production
of seedlings.

Since chestnut seed and seedling quality is affected by seed origin and environment,
choosing a proper seed source is an important factor in seedling production. Seed origin
must be observed when selecting out-planting materials, especially when the conditions
are unfavorable, e.g., drought stress. Properly selected seeds and seedlings ensure the
success of reforestation and provide the best chance for the establishment of young plants.
Choosing the right seed source for rootstock production is also of paramount importance
in nursery operations, as it increases the viability of the grafted plant and provides a genet-
ically more diverse rootstock, which is more likely to cope with the changing environment
and possible new pests.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12070858/s1, Table S1: Studied populations.
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